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Abstract

This paper presents a unified framework for constructing Approximate Message Passing (AMP) al-
gorithms for rotationally-invariant models. By employing a general iterative algorithm template and
reducing it to long-memory Orthogonal AMP (OAMP), we systematically derive the correct Onsager
terms of AMP algorithms. This approach allows us to rederive an AMP algorithm introduced by Fan
and Opper et al., while shedding new light on the role of free cumulants of the spectral law. The free cu-
mulants arise naturally from a recursive centering operation, potentially of independent interest beyond
the scope of AMP. To illustrate the flexibility of our framework, we introduce two novel AMP variants
and apply them to estimation in spiked models.
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1 Introduction

1.1 AMP Algorithm

Approximate message passing (AMP) [5, 7, 13, 22, 24] has been applied to a broad range of high-dimensional
estimation problems. Assume that W ∈ RN×N is a symmetric random matrix sampled from the Gaussian
orthogonal ensemble (GOE), namely, W = 1√

2N

(
G+GT

)
, where G consists of independent identically

distributed (i.i.d.) Gaussian entries. Starting from an initial guess u0, the AMP algorithm proceeds as
follows:

rt = Wut − ⟨∂t−1ut⟩ · ut−1, (1a)

ut+1 = ηt+1(rt), (1b)

where ηt : R 7→ R is Lipschitz continuous and applies to elements of the input vector rt separately and
⟨∂t−1ut⟩ :=

∑N
i−1 η

′
t (rt−1[i]) /N is the divergence of the nonlinearity ηt. A distinguishing characteristic of

the AMP algorithm is that the empirical law of the iterates rt converges to a Gaussian distribution in the
high-dimensional limit:

rt → N (0, τ2t ), ∀t ≥ 1.

Moreover, the variance of the limiting Gaussian distribution can be tracked by a simple recursion known as
state evolution:

τ2t = EZ∼N (0,1)

[
η2t−1 (τt−1Z)

]
.

This property enables precise characterization of the performance of AMP, and has shed important insight to
various high-dimensional estimation and optimization problems [2, 6, 8, 14, 15, 20, 22, 38, 39, 48, 50, 56, 59].

A major limitation of the Gaussian AMP algorithm (referred to as Gaussian AMP hereafter) is that its
theoretical guarantee relies on the fact that W is GOE. Extending AMP beyond this setup is the subject
of extensive studies in recent years [9, 10, 16–19, 21, 23, 28–31, 34, 43, 47, 49, 49, 51–55, 57, 60]. In
particular, building on the earlier work of Opper et al. [43], Fan [21] proposed the following AMP algorithm
for rotationally-invariant models:

rt = Wut − (bt,1u1 + bt,2u2 + · · ·+ bt,tut) , (2a)

ut+1 = ηt+1(rt). (2b)

where the coefficients (bt,i)1≤t,1≤i≤t depend on the free cumulants of the spectral law of W . This AMP
algorithm, which we refer to as rotationally-invariant AMP (RI-AMP), was first proposed in [43] using the
non-rigorous dynamical functional theory in the context of Ising models; see [35, 43] and the references
therein for more information. Similar to the original AMP, the iterate rt in RI-AMP is asymptotically
Gaussian distributed. (Note that unlike the Gaussian AMP in (1), the Onsager term in the above RI-AMP
algorithm involves all iterates (ui)i≤t, even when the nonlinearity ηt only depends on rt.) Moreover, the
variance of the limiting Gaussian distribution can be tracked by a state evolution, which was rigorously
proved in [21] using a conditioning technique pioneered in [5, 7] for Gaussian models and generalized in
[47, 51] for rotationally-invariant models.

The above RI-AMP algorithm has been generalized to various other setups, including the rectangular
matrix setting [21], generalized linear models (GLM) [55], and multi-layer GLM [58].
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1.2 Orthogonal AMP Algorithm

The orthogonal AMP (OAMP) [30] or vector AMP (VAMP) [47] algorithms, which can be derived based
on expectation propagation [37, 42], represent another line of work that generalizes AMP to rotationally-
invariant models. This algorithm has been applied in various high-dimensional estimation problems [12, 32,
33, 44]. OAMP relies on the use of trace-free matrix denoisers and divergence-free iterate denoisers:

xt =

(
ft(W )− tr (ft(W ))

N
· IN

)
x̄t, (3a)

x̄t+1 = gt+1(x1, . . . ,xt)−
t∑

i=1

⟨∂igt+1(x1, . . . ,xt)⟩ · xi, (3b)

where ft : R 7→ R is applied to the matrix W in the following sense: let W = Odiag (λ1, . . . , λN )OT be the
eigenvalue decomposition of W , then ft(W ) := Odiag (ft(λ1), ft(λ2), . . . , ft(λN ))OT; and ∂sgt denotes the
partial derivative with respect to the sth argument of gt. A precise definition of the OAMP algorithm can
be found in Section 3. The original OAMP algorithm [30] assumes gt to be a univariate function of rt, and
the extension to the multivariate case is due to Takeuchi [52]. Note that the long-memory OAMP algorithm
originally proposed in [52] is more general than (3). The above presentation of the OAMP algorithm follows
Dudeja et al. [19] and is general enough for the purpose of the present paper. Similar to RI-AMP, the iterate
xt in OAMP converges to Gaussian xt → N (0, τ2t ), ∀t ≥ 1, thanks to the use of trace-free matrix denoiser
and divergence-free iterate denoisers.

The OAMP iteration in (3) has been used to construct various AMP algorithms, such as convolutional
AMP (CAMP) [53] and Memory AMP (MAMP) [29]. In a different direction, Takeuchi [52] showed that the
original Gaussian AMP algorithm can be mapped to some OAMP algorithm, in the context of compressed
sensing. The idea of reducing a general iterative algorithm to certain OAMP algorithms has been explored
in Dudeja et al. [19] for proving universality (with respect to the sensing matrix) of the performance of
convex regularized least squares estimators, and in Dudeja et al. [18] for analyzing the statistically optimal
performance achievable within a broad class of iterative algorithms for spiked models.

1.3 Contributions

Compared with the Gaussian AMP counterpart, the derivations of the rotationally-invariant AMP in [21, 43]
are more complicated. In this paper, we aim to provide a unified, and arguably more elementary, approach
to constructing AMP algorithms (more specifically, their Onsager terms) for rotationally-invariant models.
Our approach can be used to re-derive existing AMP algorithms and devise new variants quite easily. The
main contributions of this paper include:

• We introduce a unified framework for constructing AMP algorithms for rotationally-invariant models.
Our approach is through reduction to long-memory OAMP algorithms, based on orthogonal decompo-
sition of the iterates and recursive unfolding the algorithm. The orthogonal decomposition idea was
first introduced in [19] but for a different purpose. We use this technique to re-derive the RI-AMP
algorithm. Our results provide an alternative and more interpretable state evolution of RI-AMP.

• In our derivation of RI-AMP, the de-biasing coefficients are naturally represented as the normalized
traces of certain polynomials of W . We prove that these coefficients are related to the free cumulants
of the spectral law of W . Our proof relies on a recursive characterization of the free cumulants, which
appears to be novel and may be of independent interest.

• We demonstrate the versatility of our approach by devising two variants of RI-AMP. The first variant,
which we refer to as RI-AMP-DF, employs a different form of the Onsager term which only cancels out
the essential non-Gaussian terms. We show that RI-AMP-DF is equivalent to RI-AMP with a change
of variables. The second variant (called RI-AMP-MP), which applies a nonlinear matrix processing
on W , is inspired by Barbier et al. [3]. We further apply RI-AMP-DF to a signal estimation problem
in spiked models. Our approach provides a generalization of the BAMP algorithm proposed in [3] to
handle general non-polynomial matrix processing functions.
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1.4 Organization and Notations

Organization. This paper is organized as follows. We start with some preliminary results on free cumu-
lants in Section 2. In Section 3, we review some existing results on the orthogonal AMP algorithm. Section
4 contains the main results of this paper. Section 5 provides some generalizations and applications of our
framework. Section 6 includes some numerical experiments. The appendices contain omitted proofs and
detailed calculations.

Notation. The sets R,C represent the set real numbers and complex numbers. [N ] represents the set
{1, 2, . . . , N} and O(N) denotes the set of N × N orthogonal matrices. We use the bold-face font for

vectors and matrices. ∥u∥ denotes the ℓ2 norm of the vector u. For a vector u ∈ RN , ⟨u⟩ := 1
N

∑N
i=1 ui.

A ⊗ B and A ◦ B denote Kronecker product and Hadamard product of A and B, respectively. diag(u)
represents diagonal matrix with diagonal entries given by the entries of u. diag(A1, . . . ,At) denotes a block
diagonal matrix with the matrices A1, . . . ,At placed on the diagonal blocks. tr(M) and ∥M∥op represent
the trace and operator norms of the matrix M respectively. Ik denotes the k × k identity matrix. We use
E[·],Var[·],Cov[·] to denote expectations, variances, and covariances of random variables. N (µ,Σ) denotes
the Gaussian distribution with mean vector µ and covariance matrix Σ. We use Unif(O(N)) to denote the
Haar measure on the orthogonal group O(N). The probability measure δx on R denotes the point mass at

x ∈ R. We use
P−→ to denote convergence in probability. For a sequence of real-valued random variables

(YN )N≥1, we say that plim
N→∞

YN = y if YN
P−→ y.

2 Preliminaries

The Onsager term of the rotationally-invariant AMP (RI-AMP) algorithm in (2) involves the free cumulants
[41] of the spectral measure µ. In this section, we will first review the definition of free cumulants and then
introduce a recursive characterization of free cumulants. This recursive characterization, which appears to
be novel, will be used in our derivation of RI-AMP.

2.1 Free Cumulant

Non-crossing partition. A partition of the set {1, 2, . . . , k} is a collection of nonempty disjoint sets
B1, B2, . . . , Bk, called blocks, whose union is [k]. A partition is non-crossing if there are no four distinct
elements 1 ≤ a < b < c < d ≤ k such that a, c are in the same block while b, d are in another block. The
collection of all non-crossing partition of {1, . . . , k} is denoted as NC(k). An example of a non-crossing
partition of {1, 2, 3, 4, 5} is shown in Fig. 1.

1 2 3 4 5

Figure 1: A non-crossing partition of {1, 2, 3, 4, 5}: ({1}, {2, 5}, {3, 4}).

Free cumulant. Letmk := E[Xk] be the k-th moment of a random variableX. The free cumulants (κk)k≥1

of X are defined implicitly in terms of the moments (mk)m≥1 through the moment-cumulant formula [41]:

mk =
∑

π∈NC(k)

κπ, (4)

where κπ :=
∏

B∈π κ|B| is the product of free cumulants corresponding to the cardinality of every block B ∈ π.
For example, NC(3) includes the following five non-crossing partitions: ({1, 2, 3}), ({1, 2}, {3}), ({1, 3}, {2}),
({1}, {2, 3}), ({1}, {2}, {3}). (In fact, all partitions of {1, 2, 3} are non-crossing.) Then, according to (4),

m3 = κ3 + κ2 · κ1 + κ2 · κ1 + κ1 · κ2 + κ31.
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Note that the recursive formula (4) uniquely determines the sequence of free cumulants (κk)k≥1 from the
sequence of moments (mk)k≥1 [41, Lecture 10].

2.2 A Recursive Characterization of Free Cumulants

Proposition 1 below introduces a recursive characterization of free cumulants. This recursion naturally
appears in our derivation of the RI-AMP algorithm to be detailed in Section 4.

Proposition 1. Assume that the moments (mn)n≥1 of a random variable Λ exist for all orders. Let (κn)n≥1

be the free cumulants of Λ. Define a sequence of random variables (Qn)n≥0 recursively as follows:

Qn = ΛQn−1 −
n∑

i=1

E[ΛQi−1] ·Qn−i, ∀n ≥ 1, (5)

where Q0 := 1. Then, we have
E[ΛQn−1] = κn, ∀n ≥ 1. (6)

Proof. See Appendix A.

Remark 1 (Connection with the partial moments in [21]). The random variables (Qn)n≥0 defined in Proposi-
tion 1 are closely related to the “partial moments” introduced by Fan [21], which are doubly-indexed sequence
of coefficients that interpolate moments and free cumulants. Let (mn)n≥1 and (κn)n≥0 (with the convention
κ0 = 1) be the moments and free cumulants of Λ ∼ µ. The partial moments (ck,j)k,j≥0 are defined via [21,
Appendix A.1]:

ck,j =

j+1∑
m=0

ck−1,m · κj+1−m, ∀k ≥ 1, j ≥ 0, (7)

with initialization c0,0 = 1 and c0,j = 0,∀j ≥ 1. It can be shown that

ck,j = E
[
ΛkQj

]
, ∀k, j ≥ 0. (8)

The proof of (8) can be found in Appendix A.4.

Proposition 1 suggests a way of computing the sequence of free cumulants (κn)n≥1 from the sequence of
moments (mn)n≥1. Note that Qn is a degree-n polynomial of Λ (see (5)). The polynomial coefficients can
be computed recursively, as demonstrated in the following corollary.

Corollary 1. Let (αn,i)1≤n,0≤i≤n be the coefficients for the polynomial representations of (Qn)n≥1:

Qn =

n∑
i=0

αn,iΛ
i, ∀n ≥ 1. (9)

Then, (αn,i)1≤n,0≤i≤n satisfy the following recursion

αn,i = αn−1,i−1 −
n−i∑
j=1

κj · αn−j,i, ∀n ≥ 1, 0 ≤ i ≤ n− 1, (10)

with αi,i = 1, and αi,−1 = 0, ∀i ≥ 0.

The proof of Corollary 1 can be found in Appendix A.1. The free cumulant κn reads

κn = E[ΛQn−1]
(9)
=

n−1∑
i=0

αn−1,i · E
[
Λi+1

]
=

n−1∑
i=0

αn−1,i ·mi+1, ∀n ≥ 1. (11)

Overall, the sequence of free cumulants (κn)n≥1 can be calculated by alternatively updating (10) and (11)
in a recursive fashion. For the reader’s convenience, we describe the whole procedure in Algorithm 1.
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Algorithm 1 Calculating free cumulants from moments

Input: (mn)n≥1

Initilization: αn,n = 1, αn,−1 = 0, ∀n ≥ 0. κ1 = m1.
1: for n = 1, 2, . . . , do
2: for i = 0, 1, . . . , n− 1 do
3: αn,i = αn−1,i−1 −

∑n−i
j=1 κj · αn−j,i

4: end for
5: κn+1 =

∑n
j=0 αn,j ·mj+1

6: end for
Output: (κn)n≥1

Remark 2 (Alternative calculations of free cumulants). A more common approach to compute the free
cumulant κn of a measure from its moments m1, . . . ,mn is the following recursive formula:

κn = mn −
n−1∑
j=1

∏
k1,...,kj≥0

k1+···+kj=n−j

κjmk1
· · ·mkj

. (12)

For a derivation of (12) from the moment-cumulant formula (4), refer to [36, Proposition 17]. The proposed
method is computationally favorable than a naive implementation of (12).

2.3 Monte Carlo Estimator of Free Cumulants

The Onager term of the RI-AMP algorithm involves the free cumulants of the limiting spectral law Λ ∼ µ.
In applications, it is often the case that µ is not known and only a sample of W is available. In this case,
we may simply replace the moments (mn)n≥1 in Algorithm 1 or (12) by their estimates (m̂n)n≥1. Assuming
that the empirical eigenvalue distribution of W converges weakly to a compactly supported distribution, we
have 1

N gTW ng
a.s.−→ E[Λn] = mn where g ∼ N (0, IN ). Motivated by this fact, we consider the following

estimator of mn:

m̂n :=
1

N
gTW ng, g ∼ N (0, I). (13)

This estimator does not require eigenvalue decomposition of W and is thus computationally favorable for
large-scale problems. Similar idea was proposed by Liu et al. [29] in the context of linear models.

Algorithm 2 Monte Carlo estimator of free cumulants

Input: W , g ∼ N (0, IN ), z0 := g, κ̂0 = 1, h := Wg
1: for n = 1, 2, . . . , do
2: κ̂n = 1

NhTzn−1

3: zn = Wzn−1 −
∑n

i=1 κ̂i · zn−i

4: end for
Output: (κ̂n)n≥1

Here we propose an alternative Monte Carlo estimator of the free cumulants based on Proposition 1. Let
(Qn)n≥1 be a sequence of polynomials of W defined via (cf. (5))

Qn = WQn−1 −
n∑

i=1

κi ·Qn−i, ∀n ≥ 1 (14)

with Q0 = IN . Similar to (13) we can estimate κk as follows

κ̂n =
1

N
gTWQn−1g, g ∼ N (0N , IN ).

Note that we do not need to compute the matrices (Qn)n≥1 explicitly. An implementation of this idea is
detailed in Algorithm 2.
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3 Orthogonal AMP Algorithm

Our approach to derive the RI-AMP algorithm is by reducing it (in a recursive fashion) to certain long-
memory orthogonal AMP (OAMP) algorithm [52] which has very simple state evolution characterization.
In this section, we collect some existing results about the OAMP algorithm for later use.

Definition 1 (Orthogonal AMP algorithm). Starting from an initialization x̄1 ∈ RN , an orthogonal AMP
algorithm proceeds as follows:

xt =

(
ft(W )− tr (ft(W ))

N
· IN

)
x̄t, (15a)

x̄t+1 = gt+1(x1, . . . ,xt;a)−
t∑

i=1

⟨∂igt+1(x1, . . . ,xt;a)⟩ · xi, (15b)

where

• ft : R 7→ R is applied to W in the following sense: let W = Odiag (λ1, . . . , λN )OT be the eigenvalue
decomposition of W , then ft(W ) := Odiag (ft(λ1), ft(λ2), . . . , ft(λN ))OT.

• gt+1 : Rt×Rk 7→ R acts separately on theN rows of (x1, . . . ,xt;a) ∈ RN×t×RN×k, and ⟨∂igt+1(x1, . . . ,xt;a)⟩
denotes the empirical average of the partial derivative of gt+1 w.r.t. the i-th argument, i.e.,

⟨∂igt+1(x1, . . . ,xt;a)⟩ :=
1

N

N∑
n=1

∂gt+1(x1[n], . . . ,xt[n];a[n])

∂xi[n]
.

Here, a ∈ RN×k represents available side information, and xi[n] ∈ R and a[n] ∈ Rk denote the n-th
component of xi and n-th row of a respectively.

Throughout this paper, we will use the following convergence of high-dimensional vectors. The reader is
referred to [5, 21, 22] for more information about this notion of convergence.

Definition 2 (Convergence of high-dimensional vectors). Let (z1, . . . ,zℓ) ∈ RN×ℓ be a collection of random
vectors. We say its empirical distribution converges to random variables (Z1, . . . ,Zℓ) as N → ∞, which we
denote as

(z1, . . . ,zℓ)
W2−→ (Z1, . . . ,Zℓ),

if for any test function ψ : Rℓ 7→ R satisfying

|ψ(a)− ψ(b)| ≤ L∥a− b∥2(1 + ∥a∥2 + ∥b∥2), ∀a, b ∈ Rℓ, (16)

the following holds as N → ∞:

1

N

N∑
n=1

ψ (z1[n], . . . ,zℓ[n])
P−→ E [ψ (Z1, . . . ,Zℓ)] . (17)

The following assumptions are needed for the high-dimensional asymptotic characterization of OAMP.

Assumption 1 (Assumptions for OAMP).

(1) Let W = Odiag(λ)OT be the eigenvalue decomposition of W . We assume O ∼ Unif(O(N)) and
λ ∈ RN is deterministic. Moreover, the empirical distribution of λ converges weakly to a compactly
support probability measure µ. Additionally, the operator norm of W is upper bounded by an N -
independent constant C.

(2) The side information a ∈ RN×k and the initialization x̄1 are independent of O. Moreover, (x̄1,a)
W2−→

(X̄1,A), where E[X̄2
1] <∞ and E[∥A∥2] <∞.
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(3) For all t ≥ 1, the matrix denoiser ft : R 7→ R is continuous, and does not depend on N .

(4) For all t ≥ 1, the function gt+1 : Rt × Rk 7→ R is continuously-differentiable and Lipschitz, and does
not depend on N .

The high-dimensional asymptotic performance of OAMP admits a state evolution description. This was
first conjectured in [30] for the OAMP algorithm with univariate denoisers. A rigorous proof was provided by
[47, 51] based on a generalization of the conditioning technique in [5, 7] to Haar random orthogonal matrices.
(The proof in [47] was for the vector AMP (VAMP) algorithm. In this paper, the acronyms OAMP and VAMP
are used interchangeably.) Generalizations of OAMP to the case of multivariate denoisers are introduced
in [19, 29, 52]. The following theorem provides a state evolution characterization for the version of OAMP
algorithm as defined in Definition 1. Its proof, which is based on a simple modification of [19], is deferred to
Appendix B.

Theorem 1 (State evolution of OAMP [19]). Let (xt)t≥1 be generated via the OAMP algorithm. Suppose
Assumption 1 holds. Then, the following holds as N → ∞:

(x1, . . . ,xt;a)
W2−→ (X1, . . . ,Xt;A), ∀t ≥ 1, (18a)

where (X1, . . . ,Xt) ∼ N (0t,Ωt) is independent of (X̄1,A), and

Ωt =


Covµ [f1, f1] · · · Covµ [f1, ft]
Covµ [f2, f1] · · · Covµ [f2, ft]

...
. . .

...
Covµ [ft, f1] · · · Covµ [ft, ft]

 ◦


E
[
X̄1X̄1

]
· · · E

[
X̄1X̄t

]
E
[
X̄2X̄1

]
· · · E

[
X̄2X̄t

]
...

. . .
...

E
[
X̄tX̄1

]
· · · E

[
X̄tX̄t

]
 , (18b)

where Covµ [fi, fj ] denotes the covariance between the random variables fi(Λ) and fj(Λ) (with Λ ∼ µ), and
◦ denotes Hadamard product and

X̄t := gt(X1, . . . ,Xt−1;A)−
t−1∑
i=1

E [∂igt(X1, . . . ,Xt−1;A)] · Xi, ∀t ≥ 2. (18c)

In the above equation, µ denotes the limiting eigenvalue distribution of W .

Remark 3 (Interpretation of OAMP’s state evolution). The state evolution equation (18b) makes precise the
following approximation:

1

N
xT
sxt

(15)
=

1

N
x̄T
s

(
fs(W )− tr (fs(W ))

N
· IN

)(
ft(W )− tr (ft(W ))

N
· IN

)
x̄t, ∀s, t ≥ 1 (19a)

≃ 1

N
tr

(
fs(W )− tr (fs(W ))

N
· IN

)(
ft(W )− tr (ft(W ))

N
· IN

)
· 1

N
x̄T
s x̄t. (19b)

Standard random matrix results show that the above approximation is exact (under mild conditions) in the
large-N limit, if x̄t and x̄s were independent of the noise matrix W . Therefore, for a heuristic interpretation
of the state evolution, we may treat the iterates as if they are independent of W . This property significantly
simplifies the dynamics of OAMP algorithms and renders the state evolution easily interpretable.

A distinguishing feature of OAMP algorithm is the pairwise asymptotic orthogonality between the iterates
xs and x̄t, ∀s, t ≥ 1. This orthogonality property justifies the name “orthogonal AMP”.

Proposition 2 (Pairwise orthogonality). The following holds as N → ∞,

plim
N→∞

1

N
xT
s x̄t = 0, ∀s, t ≥ 1. (20)
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Proof. The case t = 1 is straightforward. We consider the case t > 1. From Theorem 1, the joint empirical
distributions of xs and (x1, . . . ,xt−1;a) converges in the sense of Definition 2. Consequently,

plim
N→∞

1

N
xT
s x̄t

(a)
= plim

N→∞

1

N
xT
s

(
gt(x1, . . . ,xt−1;a)−

t−1∑
i=1

⟨∂igt+1(x1, . . . ,xt−1;a)⟩ · xi

)
(b)
= E [Xsgt(X1, . . . ,Xt−1;A)]−

t−1∑
i=1

E [∂igt(X1, . . . ,Xt−1;A)] · E[XsXi]

(c)
= 0,

where step (a) is from the definition of x̄t in (15b); step (b) is due to the convergence result in Theorem 1
and the fact that ∂igt is continuous and bounded (from the assumption that gt is Lipschitz and continuously-
differentiable); step (c) is from the multivariate version of Stein’s lemma.

Remark 4. When s ≥ t, xs is not an immediate input of x̄t := gt(x1, . . . ,xt−1;a)−
∑t−1

i=1⟨∂igt+1(x1, . . . ,xt−1;a)⟩·
xi. Note that the orthogonality property (20) still holds in such cases.

Remark 5 (Orthogonal decomposition). We can decompose gt+1(x1, . . . ,xt;a) as

gt+1(x1, . . . ,xt;a) =

t∑
i=1

⟨∂igt+1(x1, . . . ,xt;a)⟩ · xi + x̄t+1, (21)

where x̄t+1 = gt+1(x1, . . . ,xt;a) −
∑t

i=1⟨∂igt+1(x1, . . . ,xt;a)⟩ · xi. Proposition 2 guarantees that x̄t+1

is asymptotically orthogonal to xi, ∀i ∈ [t]. Namely, (21) is a decomposition of gt+1(x1, . . . ,xt;a) into a
component that lies in span{x1, . . . ,xt} and a component perpendicular to it asymptotically.

OAMP algorithms have simple and interpretable state evolution, thanks to the use of trace-free and
divergence-free denoisers. Moreover, with the introduction of general long-memory processing, the OAMP
framework is very flexible and allows for convenient derivation of AMP algorithms (as we show in subsequent
sections). These attributes make OAMP a unified and simple approach for deriving AMP algorithms tailored
to rotationally-invariant models.

4 Main Results

This section presents the main results of this paper. We provide a unified way of deriving the AMP algorithms
for rotationally-invariant models.

4.1 Rotationally-Invariant AMP Algorithm

The starting point of our derivation of RI-AMP algorithm is the first order method (FOM) defined below. We
remark that FOM has the same form as RI-AMP, but the de-biasing coefficients in FOM are free parameters
and not necessarily set as in RI-AMP.

Definition 3 (First order method (FOM)). Starting from an initialization u1 ∈ RN , a first order method
(FOM) proceeds as

rt = Wut − (bt,1u1 + bt,2u2 + · · ·+ bt,tut) , ∀t ∈ N, (22a)

ut+1 = ηt+1(r1, . . . , rt), (22b)

where ηt+1 : Rt 7→ R acts separately on the N rows of (r1, . . . , rt) ∈ RN×t.

For convenience, let Bt ∈ Rt×t be the matrix collecting the de-biasing coefficients (bt,i)1≤t,1≤i≤t as

Bt :=


b1,1
b2,1 b2,2
...

...
. . .

bt,1 bt,2 · · · bt,t

 . (23)
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The rotationally-invariant AMP algorithm is a specific way of setting the de-biasing matrix Bt in order to
make the iterates (rt)t≥1 asymptotically Gaussian. We can now define the RI-AMP algorithm formally.

Definition 4 (RI-AMP algorithm [21]). The rotationally-invariant AMP (RI-AMP) algorithm is a first
order method (FOM) with the de-biasing coefficients matrix Bt set to

Bt =

t∑
i=1

κi(Φ̂t)
i−1, (24)

where (κi)i≥1 are the free cumulants of the limiting spectral law µ, and the matrix Φ̂t ∈ Rt×t collects the
empirical partial derivatives of (ηi)i∈[t] (i.e., “divergences”):

Φ̂t :=


0

⟨∂1u2⟩ 0
⟨∂1u3⟩ ⟨∂2u3⟩ 0

...
...

. . .

⟨∂1ut⟩ ⟨∂2ut⟩ · · · ⟨∂t−1ut⟩ 0

 . (25)

Remark 6 (R-transform). Recall that the free cumulants (κi)i≥1 are the coefficients in the power series
expansion of the R-transform [41]. Consequently, the de-biasing matrix formula (24) can be expressed in
terms of the R-transform, as employed in the work of Opper et al. [43]. The R-transform emerges in Opper
et al. [43] as a result of evaluating certain high-dimensional integrals asymptotically. In the present work,
free cumulants arise naturally within a recursive centering operation.

Remark 7 (Reduction to standard Gaussian AMP). For the special iid Gaussian model, namely when W
is drawn from the Gaussian orthogonal Ensemble (GOE), the RI-AMP algorithm simplifies significantly. In
this case, the free cumulants vanish except for κ2:

(κ1, κ2, κ3, κ4, . . .) = (0, 1, 0, 0, . . .).

Hence, the de-biasing matrix formula (24) reduces to Bt = Φ̂t, and RI-AMP reduces to the standard (long-
memory) Gaussian AMP.

Following [21], we make the following assumptions in order to analyze the asymptotic performance of
RI-AMP.

Assumption 2 (Assumptions for RI-AMP).

(1) Let W = Odiag(λ)OT be the eigenvalue decomposition of W . We assume O ∼ Unif(O(N)) and λ ∈
RN is deterministic. Moreover, the empirical distribution of λ, which is assumed to be deterministic,
converges weakly to a compactly support probability measure µ. Additionally, the operator norm of
W is upper bounded by an N -independent constant C.

(2) The initialization u1 ∈ RN is independent of O. Moreover, u1
W2−→ U1, where the random variable U1

has moments with all orders.

(3) For all t ≥ 1, the function ηt : Rt 7→ R is Lipschitz continuous.

4.2 Overview of Our Approach

Before presenting the technical details, we first give a brief overview of our approach to AMP algorithms for
rotationally-invariant models. Recall that the RI-AMP algorithm has the following form:

rt = Wut − (bt,1u1 + bt,2u2 + · · ·+ bt,tut) , (26a)

ut+1 = ηt+1(rt). (26b)

For ease of discussion, here we assumed that ηt(·) is a single-iterate function that only depends on rt. The
question we aim to address is:
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• How to derive the correct de-biasing coefficients (bt,i)1≤t,1≤i≤t such that (rt)t≥1 are asymptotically
Gaussian distributed?

Our approach to this question is based on an orthogonal decomposition idea first introduced by Dudeja
et al. [19]. Specifically, we decompose the iterate ut+1 := ηt+1(rt), for each t ≥ 1, into a component that is
parallel to the input vector rt and a component orthogonal to it (denoted as ūt+1). For the more general
scenario where ηt+1(·) depends on all past iterates (r1, . . . , rt), this orthogonal decomposition idea can be
generalized naturally: we decompose ηt+1(r1, . . . , rt) into a component that lies in span(r1, . . . , rt) and a
component orthogonal to it. (Notice that if the input vectors (r1, . . . , rt) are jointly Gaussian, the residual
orthogonal component ūt+1 is nothing but the divergence-free estimate defined in Section 3.) Recursively
unfolding the algorithm using this orthogonal decomposition, it is possible to represent the iterates (rt)t≥1

as linear combinations of the orthogonal components (ūt)t≥1. This representation is already close to an
OAMP algorithm defined in Section 3. It turns out that, by properly choosing the de-biasing coefficients,
it is always possible to make the matrices appeared in this linear representation of (ūt)t≥1 asymptotically
trace-free, thereby casting the algorithm into an OAMP algorithm. The asymptotic Gaussian distribution
then follows from the general property of OAMP.

We illustrate the idea by considering the first few iterations. In our discussions, we will encounter
a centering operation that makes a matrix asymptotically trace-free, and we shall denote this centering
operation by T . Specifically, letting f : R 7→ R be a matrix denoising function which acts on input matrices
as in (15), we denote

T (A) := A− EΛ∼µ[f(Λ)] · IN , where A := f(W ). (27)

We now consider the first iteration of the algorithm. From (26), we have r1 = (W − b1,1IN )u1. By setting
b1,1 = m1 := E[Λ], we have

r1 = T (W )u1 := Q1(W )u1. (28)

This guarantees r1 to be asymptotically Gaussian by Theorem 1 in Section 3. Next, we show how to choose
b2,1 and b2,2 to make r2 asymptotically Gaussian. Our approach is based on an orthogonal decomposition
of u1:

u2 := d1 · r1 + ū2, (29)

where the first term is parallel to r1 and the second component orthogonal to r1 (in certain asymptotic
sense). When r1 is asymptotically Gaussian, by appealing to Stein’s lemma, the choice d1 := ⟨∂1u2⟩ satisfies
the asymptotic orthogonality condition. The orthogonal residual ū2 := η1(r1) − d1 · r1 is a divergence-
free function of r1. For notational simplicity, we assume ⟨∂1u2⟩ = 1 in the following discussions. Now,
substituting (29) into (26) and denoting ū1 := u1 yields

r2 = Wu2 − (b2,1u1 + b2,2u2)
(29)
= W (r1 + ū2)− b2,1ū1 − b2,2 (r1 + ū2)
(28)
= (WQ1(W )− b2,2Q1(W )− b2,1I)ū1 + (W − b2,2I)ū2

= T
(
WQ1(W )− b2,2Q1(W )− b2,1I

)︸ ︷︷ ︸
Q2(W )

ū1 + T (W − b2,2I)︸ ︷︷ ︸
Q1(W )

ū2,

where the last step holds when b2,1 and b2,2 are chosen to center the respective matrices:

b2,2 = lim
N→∞

1

N
tr (W ) = m1,

b2,1 = lim
N→∞

1

N
tr (WQ1(W )− b2,2Q1(W )) = lim

N→∞

1

N
tr (WQ1(W ))

(28)
= m2 −m2

1.

(31)

Again, by Theorem 1 in Section 3, vectors in the form of P (W )ū are asymptotically Gaussian with P (·) a
polynomial and P (W ) trace-free, and ū divergence-free. Hence, both Q2(W )ū1 and Q1(W )ū2 are asymp-
totically Gaussian, and so is r2 = Q2(W )ū1 +Q1(W )ū2.

We can continue this process. In each step, we decompose the estimate ηt(rt) as a linear term plus a
divergence-free term. To illustrate the main idea and simplify discussions, we assume that ⟨∂t(ut+1)⟩ = 1
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∀t ≥ 1 in this section. It is not difficult to show that, under proper choices of the de-biasing coefficients, we
could represent (rt)t≥1 as:

r1 = Q1(W )ū1,

r2 = Q2(W )ū1 +Q1(W )ū2,

r3 = Q3(W )ū1 +Q2(W )ū2 +Q1(W )ū3,

...

rt = Qt(W )ū1 +Qt−1(W )ū2 +Qt−2(W )ū3 + · · ·+Q1(W )ūt,

(32)

where ū1 := u1. In the above display, (Qt)t≥1 is a sequence of polynomials that have zero-mean w.r.t. µ
(i.e., Qt(W ) is trace-free) and they satisfy certain recursive relationship.

In our approach, the way to set the de-biasing coefficients is conceptually very simple: we choose Bt to
center the matrices in the representations of (rt)t≥1 as linear combinations of (ūt)t≥1. We shall prove in
the next subsections that such choice of Bt is unique, and is precisely the one used in RI-AMP.

4.3 Derivation of Rotationally-Invariant AMP

In this section, we present our approach to derive the RI-AMP algorithm. The basic idea is to start with a
FOM and figure out the correct de-biasing matrix such that the FOM can be recursively reduced to certain
OAMP algorithm.

Similar to the strategy used in Section 4.2, we introduce a set of intermediate variables (ūt)t≥1. We
reformulate the iterates (rt)t≥1 in a FOM as linear combinations of (ūt)t≥1, which we record in Lemma 1
below. We emphasize that the results in this lemma are purely algebraic. In particular, the quantities (dt,i)
are understood as free parameters in this lemma and need not be the divergences of the de-noisers.

Lemma 1 (Reformulation of FOM). Let (ut)t≥1 and (rt)t≥1 be generated as in (22). Let (dt,i)1≤t,1≤i≤t be
an arbitrary sequence. Define

ūt := ut − (dt−1,1 · r1 + · · ·+ dt−1,t−1 · rt−1) , ∀t > 1, (33)

and ū1 := u1. Then, (rt)t≥1 can be represented as
r1
r2
...
rt

 =


P1,1(W )
P2,1(W ) P2,2(W )

...
...

. . .

Pt,1(W ) Pt,1(W ) · · · Pt,t(W )



ū1

ū2

...
ūt

 , (34)

where (Pt,i)1≤t,1≤i≤t is a sequence of polynomials. Let Pt : R 7→ Rt×t be a collection of these polynomials:

Pt(λ) :=


P1,1(λ)
P2,1(λ) P2,2(λ)

...
...

. . .

Pt,1(λ) Pt,1(λ) · · · Pt,t(λ)

 , ∀λ ∈ R. (35)

Then, Pt(λ) admits the following explicit expression:

Pt(λ) = (It − λDt + BtDt)
−1(λIt − Bt), ∀λ ∈ R. (36)

In the above equation, Bt ∈ Rt×t denotes the de-biasing matrix (23) and Dt ∈ Rt×t is defined as

Dt :=


0

d1,1 0
d2,1 d2,2 0
...

...
. . .

dt−1,1 dt−1,2 · · · dt−1,t−1 0

 . (37)
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Proof. See Appendix C.1.

In Lemma 1, we have rewritten the iterate rt as a linear combination of the variables (ū1, . . . , ūt), which
we defined in (33). (The reason why we introduce these new variables will be clear in our later discussions.)
Towards reducing the FOM to a OAMP algorithm and as the second step of our derivation, we impose a
trace-free constraint on the matrices (Pt,i)1≤t,1≤i≤t in (33), in order to cast the FOM into certain long-
memory OAMP algorithm. The following lemma shows that this trace-free constraint naturally yields the
form of the de-biasing matrix Bt used in RI-AMP.

Lemma 2 (Choice of de-biasing matrix Bt). Let B ∈ Rt×t and Dt ∈ Rt×t be two deterministic matrices
defined as in (23) and (37). Define Pt : R 7→ Rt×t as

Pt(λ) := (It − λDt + BtDt)
−1(λIt − Bt), ∀λ ∈ R. (38)

Then, the following hold true.

(1) For any given Dt, the following equation has a unique solution in Bt:

E [Pt(Λ)] = 0t×t, Λ ∼ µ. (39)

(2) The matrix Bt that solves (39) can be represented as

Bt =

t∑
i=1

αiD
i−1
t , (40)

where we adopted the convention D0
t := I. Let (Qn)n≥0 be a sequence of polynomials recursively defined

by (Q0(λ) := 1,∀λ ∈ R):

Qn(λ) = λQn−1(λ)−
n∑

i=1

E [ΛQi−1(Λ)] ·Qn−i(λ), ∀λ ∈ R, n ≥ 1. (41a)

The coefficients (αn)n≥1 in (40) are given by

αn := E [ΛQn−1(Λ)] , ∀n ≥ 1. (41b)

(3) The matrix defined in (40) can be alternatively represented as

Bt =

t∑
i=1

κiD
i−1
t , (42)

where (κi)i≥1 denotes the free cumulants of µ.

(4) With Bt given by (40), Pt(λ) can be represented as

Pt(λ) =

t∑
i=1

Qi(λ)D
i−1
t . (43)

Proof. See Appendix C.2.

Remark 8 (On the appearance of free cumulants). Lemma 2 shows that, to make the matrices in the linear
representation (34) asymptotically trace-free (in the sense of (39)), the de-biasing matrix Bt is uniquely given
by a polynomial of Dt, whose coefficients are free cumulants of the limiting spectral law µ. We remark that,
in our derivation of RI-AMP, the appearance of the recursion (41) is natural, while its connection with free
cumulants (as established in Proposition 1) may not be immediately clear. In Section 5.1, we will introduce
a variant of RI-AMP where the Onsager term is a linear combination of all past divergence-free estimates
(which may be interpreted as “essential” non-Gaussian terms). In this variant of RI-AMP, the de-biasing
coefficients satisfy a recurrence different from (41) and has no direct relationship with the free cumulants.
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The above lemma shows that choosing de-biasing matrix Bt =
∑t

i=1 κiD
i−1
t ensures the matrices

(Pi,j(W ))1≤i,1≤j≤i to be asymptotically trace-free. To fully specify the FOM, it remains to determine

the matrix Dt which appears in the definition of (ūt)t≥1. In RI-AMP, this matrix is set to be Dt = Φ̂t,

where Φ̂t collects the empirical divergences of the de-noisers; see (25). Lemma 3 below summarizes our new
formulation of RI-AMP in terms of the intermediate variables (ūt)t≥1.

Lemma 3 (Choice of Dt and final RI-AMP algorithm). Let (rt)t≥1 be the iterates generated by the RI-AMP

algorithm. With slight abuse of notations, define (ūt)t≥1 as in (33), but with Dt = Φ̂t. Namely, ū1 := u1

and
ūt := ut − (⟨∂1ut⟩ · r1 + · · ·+ ⟨∂t−1ut⟩ · rt−1) , ∀t > 1. (44)

Then, (rt)t≥1 can be represented as
r1
r2
...
rt

 =


P̂1,1(W )

P̂2,1(W ) P̂2,2(W )
...

...
. . .

P̂t,1(W ) P̂t,1(W ) · · · P̂t,t(W )



ū1

ū2

...
ūt

 , (45)

where (P̂t,i)1≤t,1≤i≤t are a sequence of polynomials. Let P̂t(λ) ∈ Rt×t be the collection of these polynomials
(cf. (35)). We have

P̂t(λ) =

t∑
i=1

Qi(λ)Φ̂
i−1

t , ∀λ ∈ R, (46)

where (Qi(λ))i≥1 are defined recursively

Qn(λ) = λQn−1(λ)−
n∑

i=1

E[ΛQi−1(Λ)] ·Qn−i(λ), ∀λ ∈ R, n ≥ 1, (47)

under the initialization Q0(λ) = 1,∀λ ∈ R.

Proof. Note that RI-AMP is an instance of FOM with Bt =
∑t

i=1 κiΦ̂
i−1

t . The claimed result is a con-
sequence of Lemma 1 and Lemma 2. However, we emphasize one subtle point here. Note that we have
assumed Bt and Dt to be deterministic in Lemma 2, based on which EΛ∼µ [Pt(Λ)] was calculated. On the

other hand, when Dt = Φ̂t, which contains the empirical divergences of the de-noisers, the matrix Dt is no
longer deterministic and correlated with W . Nevertheless, Lemma 3 still holds. To see this, note that by
Lemma 1, (45) holds with

P̂t(λ) = (It − λΦ̂t + BtΦ̂t)
−1(λIt − Bt) (48a)

=

t∑
i=1

(
λΦ̂t − BtΦ̂t

)i−1

(λIt − Bt), (48b)

where the second step is due to the following identity for a strictly lower triangular matrix A ∈ Rt×t:

(It − A)−1 = I+ A+ A2 + · · ·+ At−1. Now, Bt =
∑t

i=1 κiΦ̂
i−1

t , we have

Bt =

t∑
i=1

κiΦ̂
i−1

t =

t∑
i=1

E[ΛQi−1(Λ)] · Φ̂
i−1

t , (49)

where (Qi(λ))i≥1 are defined recursively in (47). The second equality in the above equation is due to the

recursive characterization of free cumulants in Lemma 1. From (48) and (49), P̂t(λ) is a polynomial of Φ̂t.

Applying similar algebraic calculations as the proof of Lemma 2-(2) leads to the expression of Φ̂t (46) that
we aim to derive.
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Remark 9 (RI-AMP with univariate denoisers). When the de-noiser ηt+1(·) only depends on rt, the above

representation of RI-AMP can be further simplified. In particular, if ⟨∂tut+1⟩ = 1,∀t ≥ 1, the matrix P̂t(λ)
becomes (see (46) and (25))

P̂t(λ) =

t∑
i=1

Qi(λ)


0
1 0
0 1 0
...

...
. . .

0 0 · · · 1 0


i−1

=


Q1(λ)
Q2(λ) Q1(λ)
Q3(λ) Q2(λ) Q1(λ)

...
...

. . .

Qt(λ) Qt−1(λ) · · · Q2(λ) Q1(λ)

 .

Hence, the representation of (rt)t≥1 in (45) recovers (32) which we introduced in Section 4.2.

Notice that the representation of the iterates (rt)t≥1 of RI-AMP in (45) is deterministic. At this point,
we have rewritten the RI-AMP algorithm as an OAMP algorithm. The asymptotic Gaussian distribution
of (rt)t≥1 then follows from the state evolution results of OAMP. Theorem 2 below summarizes the state
evolution of RI-AMP, which reproduces the state evolution result of RI-AMP [21], but presented differently.

Theorem 2 (State evolution of RI-AMP). Let (rt)t≥1 be generated by the RI-AMP algorithm. Suppose that
Assumption 2 holds. Then, the following holds as N → ∞:

(r1, . . . , rt)
W2−→ (R1, . . . ,Rt) ∼ N (0t,Σt), ∀t ≥ 1, (51a)

where
Σt = EΛ∼µ

[
Pt(Λ) ∆̄t Pt(Λ)

T
]
, (51b)

with

Pt(Λ) :=
t∑

i=1

Qi(Λ)Φ
i−1
t . (51c)

In the above equations,

• The sequence of polynomials (Qi)i≥1 are defined in (41).

• Φt is defined as in (25) but with the empirical divergence ⟨∂iuj⟩ := ⟨∂iηj(r1, . . . , rj−1)⟩ replaced by
E [∂iηj(R1, . . . ,Rj−1)], for all j ∈ [t] and i ∈ [j − 1].

• ∆̄t is defined as

∆̄t :=


E
[
Ū1Ū1

]
E
[
Ū1Ū2

]
· · · E

[
Ū1Ūt

]
E
[
Ū2Ū1

]
E
[
Ū2Ū2

]
· · · E

[
Ū2Ūt

]
...

...
. . .

...
E
[
ŪtŪ1

]
E
[
ŪtŪ2

]
· · · E

[
ŪtŪt

]
 , (51d)

where Ūj := ηj(R1, . . . ,Rj−1)−
∑j−1

i=1 E [∂iηj(R1, . . . ,Rj−1)] · Ri, ∀j ≥ 2.

Proof. See Appendix C.3.

The state evolution of RI-AMP in Theorem 2 is presented in a way that is most natural from the
perspective of OAMP, and is in a different format as that given in [21, Section 4]. The following proposition
shows that these two formulations are equivalent.

Proposition 3 (Consistency with the state evolution in [21]). The covariance Σt (51b) can be equivalently
written as

Σt =

∞∑
j=0

j∑
i=0

κj+2Φ
i
t∆t

(
(Φt)

j−i
)T
, (52a)
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where

∆t :=


E [U1U1] E [U1U2] · · · E [U1Ut]
E [U2U1] E [U2U2] · · · E [U2Ut]

...
...

. . .
...

E [UtU1] E [UtU2] · · · E [UtUt]

 (52b)

with Uj := ηj(R1, . . . ,Rj−1), and (R1, . . . ,Rt) are the state evolution random variables described in (51a).

Proof. See Appendix C.4.

5 Generalizations and Applications

In the preceding section, we demonstrated how our approach can be employed to derive an existing AMP
algorithm. In this section, we showcase the versatility of our approach by devising two novel AMP variants.
The first variant employs a different form of Onsager term. The second variant allows an additional matrix
denoising step, inspired by the recent line of work [3, 4, 18]. It is possible to produce numerous other variants
of AMP, but we do not pursue it further in this paper. Finally, we discuss the applications in spiked models.

5.1 Generalization of RI-AMP: Different Form of Onsager Terms

In the RI-AMP algorithm, the Onsager term bt,1u1+ · · ·+bt,tut is employed to cancel out the non-Gaussian
component within Wut. Our derivation of RI-AMP in Section 4 indicates that it is possible to achieve the
same goal by using an Onsager term that is a linear combination of (ū1, . . . , ūt). Motivated by this insight,
we introduce a new variant of RI-AMP, coined RI-AMP-DF.

Definition 5 (A variant of RI-AMP: RI-AMP-DF). Starting from an initialization u1 = ū1 ∈ RN , RI-
AMP-DF proceeds as

rt = Wut − (ct,1ū1 + ct,2ū2 + · · ·+ ct,tūt) , ∀t ≥ 1, (53a)

ut+1 = ηt+1(r1, . . . , rt), (53b)

ūt+1 = ηt+1(r1, . . . , rt)− (⟨∂1ut+1⟩ · r1 + · · ·+ ⟨∂tut+1⟩ · rt) , (53c)

where ηt+1 : Rt 7→ R acts separately on the N rows of (r1, . . . , rt) ∈ RN×t. The de-biasing coefficients are
set to

Ct :=


c1,1
c2,1 c2,2
...

...
. . .

ct,1 ct,2 · · · ct,t

 =

t∑
i=1

γi(Φ̂t)
i−1, (54)

where Φ̂t is defined in (25) and the sequence (γn)n∈N are defined as

γn = E [ΛHn−1(Λ)] , ∀n ≥ 1, Λ ∼ µ, (55)

with (Hi(λ))i≥1 a sequence of polynomials satisfying the recurrence (H0(λ) := 1):

Hn(λ) = λHn−1(λ)− E [ΛHn−1(Λ)] , ∀n ≥ 1, λ ∈ R. (56)

The de-biasing matrix Ct (54) is derived using the approach detailed in Section 4.3. Note that both
the de-biasing matrix Bt (24) for RI-AMP and the de-biasing matrix Ct for RI-AMP-DF are polynomials

of the divergence matrix Φ̂t. Moreover, the coefficients in both polynomial representations admit recursive
characterization; see (41) and (56).

As before, we can reduce RI-AMP-DF to a certain OAMP algorithm. The following theorem summarizes
the reduction result.

Theorem 3 (Reduction of RI-AMP-DF to OAMP and state evolution). Let (rt)t≥1 and (ūt)t≥1 be generated
via the RI-AMP-DF algorithm. Then, the following statements hold.
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(1) For all t ≥ 1, 
r1
r2
...
rt

 =


Ĝ1,1(W )

Ĝ2,1(W ) Ĝ2,2(W )
...

...
. . .

Ĝt,1(W ) Ĝt,2(W ) · · · Ĝt,t(W )



ū1

ū2

...
ūt

 , (57a)

Let Ĝt(λ) be the matrix that collects the polynomials (Ĝi,j)1≤i≤t,1≤j≤i (cf. (35)). Then, Ĝt(λ) admits
the following representation:

Ĝt(λ) =

t∑
i=1

Hi(λ)Φ̂
i−1

t , ∀λ ∈ R, (58)

where (Hn(λ))n≥1 are defined in (56).

(2) Suppose that Assumption 2 holds. As N → ∞,

(r1, . . . , rt)
W2−→ (R1, . . . ,Rt) ∼ N (0t,∆t), ∀t ≥ 1, (59a)

where
∆t = EΛ∼µ

[
Gt(Λ) ∆̄t Gt(Λ)

T
]

(59b)

with

Gt(Λ) :=
t∑

i=1

Hi(Λ)Φ
i−1
t . (59c)

In the above equation, ∆̄t and Φt are defined similarly as in Theorem 2.

Proof. See Appendix D.1.

Remark 10 (RI-AMP-DF can implement any GFOM). The Onsager terms of RI-AMP-DF and the original
RI-AMP algorithm are slightly different. However, these two algorithms are essentially equivalent up to
a proper change of variables. In fact, both RI-AMP-DF and RI-AMP are equivalent to a broader class
algorithms, namely, the generalized first order methods (GFOM) introduced in [11, 40]. More details about
this reduction can be found in Appendix D.2.

5.2 Generalization of RI-AMP: Matrix Processing

Motivated by [3], we introduce another variant of RI-AMP that applies a nonlinear processing function on
the matrix W in each iteration. In the following, we call this algorithm RI-AMP-MP. It is shown in [3] that
adding the matrix processing operation could lead to better signal estimation for spiked models.

Definition 6 (A variant of RI-AMP: RI-AMP-MP). Starting from an initialization u1 ∈ RN , RI-AMP-MP
proceeds as follows

rt = ft(W )ut − (et,1u1 + et,2u2 + · · ·+ et,tut) , (60a)

ut+1 = ηt(r1, . . . , rt), (60b)

where ft : R 7→ R is continuous and applied to the eigenvalues of W with the eigenvectors unchanged. Let
Et ∈ Rt×t be a matrix collecting the de-biasing coefficients:

Et :=


e1,1
e2,1 e2,2
...

...
. . .

et,1 et,2 · · · et,t

 . (61)

The de-biasing matrix Et will be set according to Lemma 4 below.

17



We make two remarks about the RI-AMP-MP algorithm.

(1) If the matrix processing function (ft)t≥1 are identical across different iterations, then RI-AMP-MP

effectively reduces to an RI-AMP with the original rotationally-invariant matrix replaced by Ŵ :=
f(W ). Employing an iteration-dependent matrix processing matrix complicates the derivations of the
algorithm.

(2) In [3], the matrix processing functions (ft)t≥1 are assumed to be polynomials, and the Onsager terms
and the associated state evolution are derived by mapping the corresponding algorithm to certain
RI-AMP algorithm together with re-indexing. Here, we consider general continuous matrix processing
functions.

The following lemma summarizes the reduction of RI-AMP-MP to OAMP. Its proof is similar to that of
Lemma 1 and Lemma 2, and thus omitted.

Lemma 4 (Reduction of RI-AMP-MP to OAMP). Let (rt)t≥1 be generated via the RI-AMP-MP algorithm
and let (ūt)t≥1 be defined as in (44). Then, the following holds for all t ≥ 1:

(1) For any fixed Et, we have
r1
r2
...
rt

 =


Ĵ1,1(W )

Ĵ2,1(W ) Ĵ2,2(W )
...

...
. . .

Ĵt,1(W ) Ĵt,2(W ) · · · Ĵt,t(W )



ū1

ū2

...
ūt

 , (62a)

where (Ĵi,j)1≤i,1≤j≤i is a sequence of functions. Let Ĵt : R 7→ Rt×t be a matrix representation of these

functions (similar to (35)). Then, Ĵt(λ) can be written into the following explicit form:

Ĵ(λ) :=
(
It − diag{f1(λ), . . . , ft(λ)}Φ̂t + EtΦ̂t

)−1

(diag{f1(λ), . . . , ft(λ)} − Et) , ∀λ ∈ R. (62b)

(2) For any Φ̂t ∈ Rt×t, the following equation has a unique solution in Et:

E
[
Ĵ(Λ)

]
= 0t×t, (63)

where the expectation is taken w.r.t. Λ ∼ µ, with Λ ∼ µ independent of Φ̂t.

Some comments are in order:

(1) It seems that the de-biasing matrix Et in RI-AMP-MP, determined by (63), cannot be expressed as

a simple polynomial of Φ̂t. While we can solve (63) for Et recursively (namely, row-by-row), as in

the proof of Lemma 2-(1), the non-commutativity of diag{f1(λ), . . . , ft(λ)} and Φ̂t precludes a simple
polynomial form.

(2) Similar to RI-AMP-DF, we may use an Onsager term that is a linear combination of the divergence-free
estimates. In this case, the de-biasing matrix can be expressed explicitly, but still cannot be be written
as a simple polynomial of Φ̂t.

(3) The state evolution equations of RI-AMP-MP can be readily derived from the representation (62). We
omit the details here.

5.3 Application: Spiked Matrix Model

Until now, we have focused on the derivation of general AMP iterations. In this section, we illustrate
the application of our approach to one concrete signal estimation problem, namely, spiked models. AMP
algorithms have been instrumental to the theoretical underpinnings of spiked models [25–27, 38, 45, 46].
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We shall show that our approach can conveniently recover and generalize existing AMP algorithms in the
context of spiked models.

Consider a spiked matrix model where the observation matrix Y ∈ RN×N reads:

Y =
θ

N
x⋆x

T
⋆ +W . (64)

In the above equation, x⋆ ∈ RN is the signal vector to be estimated, θ > 0 is a parameter that dictates the
SNR, and W is a noise matrix which we assume to be symmetric and rotationally-invariant. We first recall
the definitions of the OAMP algorithm introduced in [18] for spiked models. Note that compared with the
OAMP algorithms in (15), the only difference is that the matrix W in (15) is replaced by the observation
matrix Y .

Definition 7 (OAMP algorithm for spiked models [18]). Starting from an initialization x̄1 ∈ RN , an
orthogonal AMP algorithm for the spiked model (64) proceeds as follows:

xt =

(
ft(Y )− tr (ft(Y ))

N
· IN

)
x̄t, (65a)

x̄t+1 = gt+1(x1, . . . ,xt;a)−
t∑

i=1

⟨∂igt+1(x1, . . . ,xt;a)⟩ · xi, (65b)

where ft : R 7→ R and gt+1 : Rt × Rk 7→ R are defined similarly as in Definition 1.

The above definition of OAMP is slightly different from that in [18] in the sense that the empirical
estimates tr (ft(Y )) /N and ⟨∂igt+1(z1, . . . ,zt;a)⟩ are involved in (65), whereas the OAMP in [18] uses their
corresponding large-N limits. Despite this difference, the state evolution result in [18] still applies and we
record the results in the following lemma. (This can be shown following the same arguments as in the proof
of Theorem 1, and we omit the details.) We also refer the reader to [18, Section 4.1] for a heuristic derivation
of the state evolution equations.

Lemma 5 (State evolution of OAMP for spiked models [18]). Let (xt)t∈N be generated via (65). Suppose

Assumption 1 holds. Assume additionally that (x⋆;a)
W2−→ (X⋆;A) ∼ π where E[X2

⋆] = 1 and E[∥A∥2] < ∞.
Then, the following holds for all t ≥ 1:

(x⋆,x1, . . . ,xt;a)
W2−→ (X⋆,X1, . . . ,Xt;A), (66a)

where (X⋆,A) ∼ π and

[X1,X2, . . . ,Xt]
T
= βtX⋆ + [Z1,Z2, . . . ,Zt]

T
, (66b)

where [Z1, . . . ,Zt] ∼ N (0,Ωt,1 +Ωt,2) is independent of X⋆, and (βt,Ωt,1,Ωt,2) are given by

βt =

E
[
f̄1(Λν)

]
...

E
[
f̄t(Λν)

]
 ◦αt, (66c)

Ωt,1 =

Covν
[
f̄1, f̄1

]
· · · Covν

[
f̄1, f̄t

]
...

. . .
...

Covν
[
f̄t, f̄1

]
· · · Covν

[
f̄t, f̄t

]
 ◦ (αtα

T
t ), (66d)

Ωt,2 =

Covµ
[
f̄1, f̄1

]
· · · Covµ

[
f̄1, f̄t

]
...

. . .
...

Covµ
[
f̄t, f̄1

]
· · · Covµ

[
f̄t, f̄t

]
 ◦ (∆̄t −αtα

T
t ), (66e)

where f̄i(λ) := fi(λ) − EΛ∼µ[Λ],∀λ ∈ R, i ∈ [t] and Covµ
[
f̄i, f̄j

]
is defined as in Theorem 1, and (αt, ∆̄t)

are defined as

αt =

E
[
X⋆X̄1

]
...

E
[
X⋆X̄t

]
 and ∆̄t =

E
[
X̄1X̄1

]
· · · E

[
X̄1X̄t

]
...

. . .
...

E
[
X̄tX̄1

]
· · · E

[
X̄tX̄t

]
 . (66f)
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In the above equations, ν is a probability measure whose Stieltjes transform (defined asmν(z) :=
∫
R

ν(dλ)
z−λ ,∀z ∈

C\R) is given by:

mν(z) =
mµ(z)

1− θmµ(z)
, ∀z ∈ C\R. (66g)

Further,

X̄t := gt(X1, . . . ,Xt−1;A)−
t−1∑
i=1

E [∂igt(X1, . . . ,Xt−1;A)] · Xi, ∀t ≥ 2. (66h)

Remark 11 (On the measure ν). The state evolution equations in the above theorem involve a probability
measure ν. As shown in [18], the measure ν is the large-N limit of the following empirical measure:

νN :=
1

N

N∑
i=1

(
xT
⋆ui(Y )

)2 · δλi(Y ), (67)

where (λi(Y ))1≤i≤N and (ui(Y ))1≤i≤N denote the eigenvalues and eigenvectors of Y respectively. For more
explicit characterization of ν by Stieltjes inversion see [18, Appendix A.1].

We can now apply our approach to derive AMP algorithms by reduction to OAMP algorithms. We
consider a variant of RI-AMP-MP where the matrix processing function does not change across iterations.

Definition 8 (RI-AMP-MP algorithm for spiked models). Starting from an initialization u1 ∈ RN , RI-
AMP-MP generates a sequence of iterates via

rt = f(Y )ut − (et,1u1 + et,2u2 + · · ·+ et,tut) , (68a)

ut+1 = ηt(r1, . . . , rt), (68b)

where f : R 7→ R is a continuous function that does not change across iterations, and the de-biasing matrix
Et ∈ Rt×t is given by

Et =

t∑
i=1

α̃i(Φ̂t)
i−1, (69)

where Φ̂t is defined as in (25) and (α̃i)i∈N are the free cumulants of the random variable f(Λ), Λ ∼ µ.

Remark 12 (Connection with [3]). The above algorithm is essentially the “Bayes-optimal AMP” (BAMP)
algorithm proposed in [3]. It generalizes BAMP in the sense that the matrix processing function f(·) can be
non-polynomial.

Again, we can use the same technique to reduce the above RI-AMP-MP algorithm to an OAMP algorithm,
and then apply Lemma 5 to derive a state evolution for RI-AMP-MP. Our results are summarized in the
following theorem.

Theorem 4 (State evolution of RI-AMP-MP for spiked models). Let (rt)t≥1 be generated via (68) and let
(ūt)t≥1 be defined as in (44). Then, the following statements hold.

(1) For all t ≥ 1: 
r1
r2
...
rt

 =


Ĵ1,1(Y )

Ĵ2,1(Y ) Ĵ2,2(Y )
...

...
. . .

Ĵt,1(Y ) Ĵt,2(Y ) · · · Ĵt,t(Y )



ū1

ū2

...
ūt

 . (70a)

Let Ĵt : R 7→ Rt×t be a matrix representation of the functions (Ĵi,j)1≤i≤t,1≤j≤i. Then, Ĵt(λ) can be
written into the following explicit form:

Ĵt(λ) =
t∑

i=1

Ki(λ)Φ̂
i−1

t , ∀λ ∈ R, (70b)
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where the sequence of functions (Kn)n≥1 is specified by the recurrence (with K0(λ) := 1,∀λ ∈ R)

Kn(λ) = f(λ)Kn−1(λ)−
n∑

i=1

EΛ∼µ [f(Λ)Ki−1(Λ)] ·Kn−i(λ), ∀λ ∈ R, n ≥ 1. (70c)

(2) Suppose that Assumption 2 holds. Further, assume that x⋆
W2−→ X⋆ where E[X2

⋆] = 1. As N → ∞:

(x⋆, r1, . . . , rt)
W2−→ (X⋆,R1, . . . ,Rt), ∀t ≥ 1, (71a)

where

[R1,R2, . . . ,Rt]
T
= βtX⋆ + [Z1,Z2, . . . ,Zt]

T
, (71b)

where [Z1, . . . ,Zt] ∼ N (0,Σt,1 +Σt,2) is independent of X⋆, and (βt,Σt,1,Σt,2) are given by

βt = EΛν∼ν [Jt(Λν)]αt, (71c)

Σt,1 = EΛν∼ν

[
Jt(Λν)αtα

T
t Jt(Λν)

T
]
− βtβ

T
t , (71d)

Σt,2 = EΛ∼µ

[
Jt(Λ)(∆̄t −αtα

T
t )Jt(Λ)

T
]
, (71e)

where Jt(λ) :=
∑t

i=1Ki(λ)Φ
i−1
t , ∀λ ∈ R, the probability measure ν is defined in Lemma 5, and (αt, ∆̄t)

are defined as

αt =

E
[
X⋆X̄1

]
...

E
[
X⋆X̄t

]
 and ∆̄t =

E
[
X̄1X̄1

]
· · · E

[
X̄1X̄t

]
...

. . .
...

E
[
X̄tX̄1

]
· · · E

[
X̄tX̄t

]
 . (71f)

Proof. Claim (1) can be proved analogously to Lemma 3, with W replaced by Y . Note that the reduction
of RI-AMP to OAMP as presented in Lemma 3 is a deterministic result, and still holds with W replaced by
Y . The proof of Claim (2) is similar to that of Theorem 2, the only difference being that we now appeal to
Lemma 5 (state evolution of OAMP for spiked models).

6 Numerical Results

We conduct a few numerical experiments to demonstrate the performance of the RI-AMP-MP algorithm
(Definition 6) and show the accuracy of its theoretical state evolution prediction. Note that RI-AMP-MP
generalizes the BAMP algorithm proposed in [3] in the sense that the matrix denoising function f(·) can be
non-polynomial. For polynomial f(·), the de-biasing coefficients in BAMP algorithm and the RI-AMP-MP
algorithm are slightly different (the former is based on reduction to certain RI-AMP [21] with proper time
re-indexing), but equivalent asymptotically.

Fig. 2 shows the empirical and theoretical mean square error (MSE) performances of RI-AMP-MP. We set
f(·) using the function proposed in [3, 4]. The theoretical state evolution prediction is based on the formula
given in Theorem 4. In sub-figure (a), the eigenvalue distribution µ corresponds to the trace ensemble [3]
with pure quartic potential. Both BAMP and RI-AMP-MP use the single-variate MMSE denoiser. For this
setup, the function f(·) is a polynomial and RI-AMP-MP is asymptotically equivalent to BAMP. Indeed,
as shown in Fig. 2-(a), the performances of BAMP and RI-AMP-MP are very close and are close to state
evolution prediction.

Fig. 2-(b) considers a setup where f(·) is non-polynomial and BAMP is not directly applicable. (In
principle, it is possible to approximate f(·) using polynomials within BAMP, but the Onager term and the
state evolution become somewhat cumbersome as the degree increases.) For experiment purposes, we set µ
to the Marcenko–Pastur distribution to

µ(λ) =
1

2π

√
(a+ − λ)(λ− a−)

αλ
, a+ := (1 +

√
α)2, a− := (1−

√
α)2, (72)
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where α > 0 is a parameter (which is set to α = 0.2 in our experiement). Following [4], we set the matrix
denoising function f(·) as

f(λ) =
θ

α

(
1 +

α− 1

λ

)
− θ2

αλ
. (73)

In the above equation, θ > 0 denotes the SNR parameter for the spiked model (64). The signal denoisers
ηt(·) uses the function in [21, Remark 3.3], namely, optimal linear combining followed by the univariate
MMSE function. Fig. 2-(b) confirms that our theoretical state evolution prediction is still quite accurate for
this setup.
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(a) Pure quartic distribution.
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(b) Marcenko–Pastur distribution.

Figure 2: MSE performance of the RI-AMP-MP algorithm and the BAMP algorithm [3]. In both experi-
ments, we initialize the algorithms by u1 =

√
ωx⋆ +

√
(1− ω)n where n is standard Gaussian independent

of x⋆ and ω = 0.3. The empirical results are average over 50 independent runs. N = 5000. The SNR
parameter is θ = 3 for figure (a) and θ = 1.5 for figure (b).
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transitions and sample complexity in Bayes-optimal matrix factorization. IEEE Transactions on infor-
mation theory, 62(7):4228–4265, 2016.

[26] Gen Li and Yuting Wei. A non-asymptotic framework for approximate message passing in spiked models.
arXiv preprint arXiv:2208.03313, 2022.

[27] Gen Li, Wei Fan, and Yuting Wei. Approximate message passing from random initialization with appli-
cations to Z2 synchronization. Proceedings of the National Academy of Sciences, 120(31):e2302930120,
2023.

[28] Yufan Li and Pragya Sur. Spectrum-aware adjustment: A new debiasing framework with applications
to principal components regression. arXiv preprint arXiv:2309.07810, 2023.

[29] Lei Liu, Shunqi Huang, and Brian M Kurkoski. Memory AMP. IEEE Transactions on Information
Theory, 68(12):8015–8039, 2022.

[30] Junjie Ma and Li Ping. Orthogonal AMP. IEEE Access, 5:2020–2033, 2017.

[31] Junjie Ma, Xiaojun Yuan, and Li Ping. Turbo compressed sensing with partial DFT sensing matrix.
IEEE Signal Processing Letters, 22(2):158–161, 2014.

[32] Junjie Ma, Rishabh Dudeja, Ji Xu, Arian Maleki, and Xiaodong Wang. Spectral method for phase
retrieval: an expectation propagation perspective. IEEE Transactions on Information Theory, 67(2):
1332–1355, 2021.

[33] Junjie Ma, Ji Xu, and Arian Maleki. Towards designing optimal sensing matrices for generalized linear
inverse problems. IEEE Transactions on Information Theory, 2023.

[34] Antoine Maillard, Laura Foini, Alejandro Lage Castellanos, Florent Krzakala, Marc Mézard, and Lenka
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Appendix A Proofs for Preliminaries

A.1 Derivations of the Polynomial Coefficients (Proof of Corollary 1)

Recall that (Qn)n≥1 satisfies the recursion (see (5)):

Qn = ΛQn−1 −
n∑

i=1

E[ΛQi−1] ·Qn−i, ∀n ≥ 1 (74a)

(6)
= ΛQn−1 −

n∑
i=1

κi ·Qn−i. (74b)

The polynomial representation of Qn is denoted as (see (9))

Qn =

n∑
i=0

αn,iΛ
i, ∀n ≥ 1. (75)

Combining these two equations yields

n∑
i=0

αn,iΛ
i =

n−1∑
i=0

αn−1,iΛ
i+1 −

n∑
j=1

n−j∑
i=0

κjαn−j,iΛ
i (76a)

=

n∑
i=1

αn−1,i−1Λ
i −

n∑
j=1

n−j∑
i=0

κjαn−j,iΛ
i (76b)

(a)
=

(
αn−1,n−1Λ

n +

n−1∑
i=1

αn−1,i−1Λ
i

)
−

n−1∑
i=0

n−i∑
j=1

κjαn−j,iΛ
i (76c)

= αn−1,n−1Λ
n +

n−1∑
i=1

αn−1,i−1Λ
i −

n∑
j=1

κjαn−j,0 −
n−1∑
i=1

n−i∑
j=1

κjαn−j,i

Λi, ∀n ≥ 2 (76d)

= αn−1,n−1Λ
n +

n−1∑
i=1

αn−1,i−1 −
n−i∑
j=1

κjαn−j,i

Λi −
n∑

j=1

κjαn−j,0, ∀n ≥ 2, (76e)

where step (a) is due to a swap of the summation order. Comparing the coefficients of the two sides shows
the following (∀n ≥ 2,∀1 ≤ i ≤ n− 1):

αn,n = αn−1,n−1, (77a)

αn,0 = −
n∑

j=1

κjαn−j,0, (77b)

αn,i = αn−1,i−1 −
n−i∑
j=1

κjαn−j,i. (77c)

For n = 1, it is easy to verify that α1,0 = −κ1 and α1,1 = 1. Overall, the above recursion can be written
into a unified formula (10) together with the initialization αi,i = 1, αi,−1 = 0, ∀i ≥ 0.

A.2 A Reformulation of the Moment-Cumulant Formula

We will introduce a recursive characterization of free cumulants in Proposition 1 which is is useful for our
derivation of RI-AMP. Before that, we present a useful reformulation of the right-hand side of the moment-
cumulant formula (4).
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Lemma 6. Let q0 := 1. The following holds for any sequence (qℓ)ℓ≥1:

∑
π∈NC(ℓ)

∏
B∈π

q|B| =
∑

(s1,...,sℓ)∈S(ℓ)

ℓ∏
i=1

qsi , ∀ℓ ≥ 1, (78)

where S(ℓ) denotes the collection of ℓ-tuple (s1, . . . , sℓ) satisfying

(1) sm ≥ 0, ∀m ∈ [ℓ].

(2)
∑m

j=1 sj ≤ m, ∀m ∈ [ℓ].

(3)
∑ℓ

j=1 sj = ℓ.

Proof. First, following similar reasoning as [1, pp. 364], we can prove that there is a bijection between NC(ℓ)
and S(ℓ). For completeness, we include the proof here. We shall provide the explicit forms of the maps for
both directions.

Map from NC(ℓ) to S(ℓ): Consider π := {B1, . . . , BN} ∈ NC(ℓ), where Bi denotes the i-th block of π.
Define a map ϕℓ : π 7→ (s1, . . . , sℓ):

si :=

{
|Bj |, if i is the largest element of some block Bj , where j ∈ [ℓ],

0, otherwise.
(79)

We claim that ϕℓ(π) := (s1, . . . , sℓ) ∈ S(ℓ) for any non-crossing partition π ∈ NC(ℓ). To see this, we verify
that such (s1, . . . , sℓ) satisfies the following three conditions: (1) sm ≥ 0, ∀m ∈ [ℓ]; (2)

∑m
j=1 sj ≤ m, ∀m ∈

[ℓ]; (3)
∑ℓ

j=1 sj = ℓ. Conditions (1) and (3) directly follow from the definition (79). Condition (2) is a
consequence of the definition (79) as well as the fact that π is non-crossing.

Map from S(ℓ) to NC(ℓ): Let (s1, . . . , sℓ) ∈ S(ℓ). We start from sℓ and count backwards towards s1
until we meet some nonzero sk. We claim that one of the following scenarios must happen: sk = 1 or
(sk−j , . . . , sk) = (0, . . . , 0︸ ︷︷ ︸

j−1 zeros

, j) for some 1 ≤ j ≤ k − 1. Otherwise, the defining properties of S(ℓ) would be

violated. In the latter case, we form a block consisting of {sk−j , . . . , sk}. Next, we remove the elements in
this block and repeat the whole procedure (starting from the largest elements) until no elements in [ℓ] are
left. The blocks produced by this procedure constitute a partition of [ℓ]. Finally, this construction guarantees
that the partition is non-crossing.

Proof of Lemma 6. Let π ∈ NC(ℓ) be an arbitrary non-crossing partition, and denote ϕℓ(π) = (s1(π), . . . , sn(π)) ∈
S(ℓ). By the definition of the map ϕℓ and q0 := 1, we have

qπ :=
∏
B∈π

q|B| =

ℓ∏
j=1

qsj(π).

Because of the bijection between NC(ℓ) and S(ℓ), we have

∑
π∈NC(ℓ)

∏
B∈π

q|B| =
∑

(s1,...,sℓ)∈S(ℓ)

ℓ∏
j=1

qsj , (80)

which completes the proof.

Remark 13 (Connections of S(n), Dyck paths and non-crossing partitions). The object S(ℓ) is also closely
related to (and bijective to) Dyck path [41]. A Dyck path of length 2ℓ is a lattice path in Z2 from (0, 0) to
(k, k), consisting of k east steps and k north steps, which lives below the diagonal line y = x (but may touch
it).1 Let Dyck(ℓ) be the collection of Dyck paths of length 2ℓ. An example of a Dyck path of length 10 is
shown in Fig. 3.

1Notice that the definition of Dyck path here is a flipped version of the usual definition, but they are equivalent.
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s2 = 0

Figure 3: Left: Map from (s1, . . . , s5) = (1, 0, 0, 2, 2) ∈ S(5) to a Dyck path of length 10 marked in solid
lines. Right: Map from the Dyck path to a non-crossing partition of [5]: ({1}, {2, 5}, {3, 4}). (The non-
crossing partition is depicted in Fig. 3.) The 5 horizontal/vertical steps of the Dyck path are marked in
red/blue colors.

The three objects S(n), Dyck paths and non-crossing partitions are bijective to each other. For the
connection between S(n) and Dyck paths, we note that each si (∀i ∈ [ℓ]) can be interpreted as the vertical
increment of a Dyck path at the vertical axis x = i; see illustration in the first sub-figure of Fig. 3. Therefore,
if si > 0, the Dyck path has a vertical step (marked in blue color) of length si at the axis x = i; while if
si = 0, the Dyck path has no vertical step at the axis x = i. The connection between Dyck paths and
non-crossing partitions are well-known [41], and is illustrated in the second sub-figure of Fig. 3. To map a
Dyck path to a non-crossing partition, we label the ℓ horizontal steps of the Dyck paths in increasing order
from left to right. The ℓ vertical steps of the Dyck paths are labeled in a way as shown in Fig. 3. We group
the labels in the same vertical axis into one block. These blocks form a non-crossing partition of [ℓ]. From
this map, it is clear that the cardinalities of the blocks of the non-crossing partition (|B1|, . . . , |Bk|), which
appear in the cumulant-moment formula (4), correspond to the lengths of the vertical segments of a Dyck
path.

A.3 A Recursive Characterization of Free Cumulants (Proof of Proposition 1)

Let (Qn)n≥1 be defined as in (5). Denote

qn := E[ΛQn−1], ∀n ≥ 1. (81)

We first prove that the following holds for all ℓ ≥ 1, n ≥ 0:

Hℓ,n : E[ΛℓQn] =
∑

(s1,...,sℓ)∈S(ℓ,n)

ℓ∏
j=1

qsj , (82)

where q0 := 1 and S(ℓ, n) denotes the collection of ℓ-tuple (s1, . . . , sℓ) satisfying

(1) sm ≥ 0, ∀m ∈ [ℓ].

(2)
∑m

j=1 sj ≤ m+ n, ∀m ∈ [ℓ].

(3)
∑ℓ

j=1 sj = ℓ+ n.

Next, we shall prove (82) by induction on ℓ:

1. Base case: {H1,n,∀n ≥ 0}.

2. Induction step: for all ℓ ≥ 1, {Hℓ,n,∀n ≥ 0} =⇒ {Hℓ+1,n,∀n ≥ 0}.
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Base case: When ℓ = 1, (82) reduces to

H1,n : E[ΛQn] = q1+n, (83)

which follows from the definition in (81).

Induction step: We shall prove the following holds for all ℓ ≥ 1 and n ≥ 1:

Hℓ,n =⇒ Hℓ+1,n−1. (84)

This would imply {Hℓ,n,∀n ≥ 1} =⇒ {Hℓ+1,n′ ,∀n′ ≥ 0} and hence the induction step we aim to prove
{Hℓ,n,∀n ≥ 0} =⇒ {Hℓ+1,n′ ,∀n′ ≥ 0}. To prove (84), we unfold Qn+1:

E[ΛℓQn+1] = E

[
Λℓ

(
ΛQn −

n+1∑
i=1

E[ΛQi−1] ·Qn+1−i

)]

= E[Λℓ+1Qn]−
n+1∑
i=1

qi · E
[
ΛℓQn+1−i

]
.

Re-arranging terms and noting q0 = 1:

E[Λℓ+1Qn] =

n+1∑
i=0

qi · E
[
ΛℓQn+1−i

]
(85a)

(a)
=

n+1∑
i=0

qi ·

 ∑
(s1,...,sℓ)∈S(ℓ,n+1−i)

qs1 · · · qsℓ

 (85b)

(b)
=

∑
(i,s1,...,sℓ)∈S(ℓ+1,n)

qi · qs1 · · · psℓ (85c)

where step (a) is a consequence of the induction hypothesis {Hℓ,n,∀n ≥ 0} and step (b) is from the following
recursion (which can be verified from the definition of S(ℓ+ 1, n))

S(ℓ+ 1, n) =
{
(i, s1, . . . , sℓ) : 0 ≤ i ≤ n+ 1, (s1, . . . , sℓ) ∈ S(ℓ, n+ 1− i)

}
.

This proves (84) and completes the proof of (82).
Finally, setting n = 0 in (82) yields

mℓ
(a)
= E[ΛℓQ0] =

∑
(s1,...,sℓ)∈S(ℓ,0)

ℓ∏
j=1

qsj (86a)

(b)
=

∑
(s1,...,sℓ)∈S(ℓ)

ℓ∏
j=1

qsj (86b)

(c)
=

∑
π∈NC(ℓ)

∏
B∈π

q|B|, (86c)

where step (a) follows from Q0 := 1; step (b) is from the fact that S(ℓ, 0) in (86) is equal to S(ℓ) defined in
Lemma 78; and step (c) is due to Lemma 6. Note that (86) is precisely the moment-cumulant formula that
defines free cumulants. We can invert the above formula [41, Lecture 10] and conclude that the sequence
(qℓ)ℓ≥1 is equal to the sequence of free cumulants (κℓ)ℓ≥1.

A.4 Connection with the Partial Moments in [21]

Proof of (8): We consider the following cases:

• t = 0, j = 0: we have E[Q0] = 1 = c0,0.
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• t = 0, j ≥ 1: we have E[Qj ] = 0 = c0,j .

• t = 1: From the definition (7), we have

c1,j =

j+1∑
m=0

c0,m κj+1−m
(a)
= κj+1,

where step (a) is due to the definition of c0,m for the above two corner cases. On the other hand,
Proposition 1 shows that E[ΛQj ] = κj+1,∀j ≥ 0. Hence,

E[ΛQj ] = c1,j , ∀j ≥ 0.

• t > 1: we shall prove via induction. Suppose that ck,j = E[ΛkQj ] for all 0 ≤ k ≤ t − 1 and j ≥ 0.
Then, the following holds ∀j ≥ 0:

E[ΛtQj ]
(a)
=

j+1∑
i=0

κi · E
[
Λt−1Qj+1−i

]
(87a)

(b)
=

j+1∑
i=0

κi · ct−1,j+1−i (87b)

(c)
=

j+1∑
m=0

κj+1−m · ct−1,m (87c)

(d)
= ct,j , (87d)

where

(a) This step is due to (85). Note that from the definition of qi in (81), qi := E[ΛQi−1]. On the other
hand, Proposition 1 shows E[ΛQi−1] = κi. Substituting qi = κi into (85) proves this step.

(b) This step follows from the induction hypothesis.

(c) This is a change of variable.

(d) This is from the definition of ct,j ; see (7).

The proof is now complete.

Appendix B State Evolution of OAMP (Proof of Theorem 1)

Consider the following minor variant of the OAMP algorithm in (15):

wt = (ft(W )− E [ft(Λ)] · IN ) ūt, (88a)

ūt+1 = gt+1(w≤t;a)−
t∑

i=1

E [∂igt+1(X≤t;A)] ·wi, (88b)

where the initialization ū1 = x̄1, and the expectations in (88b) are taken w.r.t. the random variables
(X1, . . . ,Xt;A) defined recursively in (18b)-(18c). Note that (88) is an instance of the vector AMP algorithm
as defined in [19, Section 4.1.2]. In the above equation, we have introduced the shorthand

w≤t := (w1, . . . ,wt).

(We will keep this notation throughout this section.) By [19, Theorem 2], the following convergence holds

(w1,w2, . . . ,wt;a)
W2−→ (X1,X2, . . . ,Xt;A), (89)
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where the state evolution random variables (X1, . . . ,Xt;A) are defined in (18b)-(18c). Compared with the
original OAMP algorithm (15), the iteration (88) replaces 1

N tr (ft(W )) and (⟨∂igt+1(x1, . . . ,xt;a)⟩)i∈[t] by

E [ft(Λ)] and (E [∂igt+1(X1, . . . ,Xt;A)])i∈[t], respectively. Similar to the arguments used in the proof of [18,

Theorem 1], we can show that the difference between these two algorithms is asymptotically negligible.

Following [18], we say u
N → ∞≃ v for two random vectors u,v ∈ RN , if

∥u− v∥2

N

P−→ 0 as N → ∞.

Given the convergence result in (89), it suffices to prove that the the iterates generated by the original OAMP
algorithm and that generated by the auxiliary iteration (88) satisfies

xt
N → ∞≃ wt, ∀t ≥ 1. (90)

We show this by induction. Suppose that this is true up to iteration t. Recall the definitions in (3) and (88):

xt+1 =

(
ft+1(W )− tr (ft+1(W ))

N
· IN

)
x̄t+1, (91a)

wt+1 = (ft+1(W )− E[ft+1(Λ)] · IN ) ūt+1. (91b)

Hence,

∥xt+1 −wt+1∥2

N
≤ 1

N

∥∥∥∥(ft+1(W )− tr (ft+1(W ))

N
· IN

)
(x̄t+1 − ūt+1)

∥∥∥∥2
+

(
E[ft+1(Λ)]−

tr (ft+1(W ))

N

)2

· 1

N
∥ūt+1∥2 (92a)

≤
∥∥∥∥ft+1(W )− tr (ft+1(W ))

N
· IN

∥∥∥∥
op

· 1

N
∥x̄t+1 − ūt+1∥2

+

(
E[ft+1(Λ)]−

tr (ft+1(W ))

N

)2

· 1

N
∥ūt+1∥2 . (92b)

To control the above term, we bound the operator norm of the matrix ft+1(W )− tr(ft+1(W ))
N · IN :

∥∥∥∥ft+1(W )− tr (ft+1(W ))

N
· IN

∥∥∥∥
op

= max
1≤i≤N

∣∣∣∣∣∣ft+1(λi)−
1

N

N∑
j=1

ft+1(λj)

∣∣∣∣∣∣ (93a)

≤ max
1≤i,i′≤N

|ft+1(λi)− ft+1(λi′)| (93b)

≤ 2 max
1≤i≤N

|ft+1(λi)| ≤ C ′, (93c)

for some N -independent constant C ′. The last step is due to the fact that max1≤i≤N |λi| is bounded by
an N -independent constant and ft+1 is continuous and independent of N ; see Assumption 1. Further, the
empirical eigenvalue distribution of W converges to a compactly support measure, hence

lim
N→∞

tr (ft+1(W ))

N
= E[ft+1(Λ)]. (94)

In light of (92)-(94), to prove (90), it remains to show

plim
N→∞

1

N
∥x̄t+1 − ūt+1∥2 = 0, (95a)

plim sup
N→∞

1

N
∥ūt+1∥2 <∞. (95b)
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Note that ūt+1 is generated via the auxiliary iteration (88), and (95b) follows from the convergence result
(89). Finally, to prove (95a), recall the definitions of x̄t+1 and ūt+1 in (3) and (88):

1

N
∥x̄t+1 − ūt+1∥2

=
1

N

∥∥∥∥∥gt+1(x≤t;a)−
t∑

i=1

⟨∂igt(x≤t;a)⟩ · xi −

(
gt+1(w≤t;a)−

t∑
i=1

E [∂igt+1(X≤t;A)] ·wi

)∥∥∥∥∥
2

≤ 1

N
∥gt+1(x≤t;a)− gt+1(w≤t;a)∥2 +

t∑
i=1

1

N

∥∥⟨∂igt(x≤t)⟩ · xi − E [∂igt+1(X≤t;A)] ·wi

∥∥2.
The above term converges to zero in probability due to the following facts:

• Induction hypothesis: xs
N → ∞≃ ws, ∀s = 1, . . . , t.

• The assumption that gt+1 is Lipschitz continuous.

• The convergence ⟨∂igt(x≤t;a)⟩
P−→ E [∂igt+1(X≤t;A)], ∀i = 1, . . . , t. This is a consequence of: (1)

the induction hypothesis: xs
N → ∞≃ ws, ∀s = 1, . . . , t; (2) the assumption that gt+1 is Lipschitz and

continuously differentiable (and hence ∂igt+1 is continuously bounded).

The proof is now complete.

Appendix C Proofs for Main Results

C.1 Reformulation of First-order Method (Proof of Lemma 1)

We stack the iterates of the RI-AMP algorithm as
r1
r2
...
rt

 =


Wu1

Wu2

...
Wut

−


b1,1IN
b2,1IN b2,2IN

...
...

. . .

bt,1IN bt,2IN · · · bt,tIN



u1

u2

...
ut

 (97a)

= (It ⊗W − Bt ⊗ IN )


u1

u2

...
ut

 . (97b)

Using the definition of ūt in (33), we have


u1

u2

...
ut

 =


ū1

ū2

...
ūt

+


0N

d1,1IN 0N

d2,1IN d2,2IN 0N

...
...

...
. . .

dt−1,1IN dt−1,2IN · · · dt−1,t−1IN 0N



r1
r2
...
rt

 (98a)

=


ū1

ū2

...
ūt

+ (Dt ⊗ IN )


r1
r2
...
rt

 . (98b)
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Substituting (98) into (97) yields
r1
r2
...
rt

 = (It ⊗W − Bt ⊗ IN )


ū1

ū2

...
ūt

+ (Dt ⊗W − BtDt ⊗ IN )


r1
r2
...
rt

 . (99a)

Re-arranging the equation, we have

[ItN − (Dt ⊗W − BtDt ⊗ IN )]


r1
r2
...
rt

 = (It ⊗W − Bt ⊗ IN )


ū1

ū2

...
ūt

 . (100)

Note that both Bt and Dt are lower triangular matrices. Moreover, Dt is strictly lower triangular. We can
then verify that ItN − (Dt ⊗W − BtDt ⊗ IN ) is lower triangular with diagonal elements all equal to one,
and thus invertible. Solving the above equation yields

r1
r2
...
rt

 = [ItN − (Dt ⊗W − BtDt ⊗ IN )]
−1

(It ⊗W − Bt ⊗ IN )


ū1

ū2

...
ūt

 . (101)

At this point, we have written (r1, . . . , rt) as a linear combination of (ū1, . . . , ūt). It remains to verify the
equivalence between (101) and (34).

Let W = OΛOT be the eigenvalue decomposition of W with Λ := {λ1, . . . , λN}. Using this decomposi-
tion, we have

[ItN − (Dt ⊗W − BtDt ⊗ IN )]
−1

(It ⊗W − Bt ⊗ IN )

= (It ⊗O) [ItN −Dt ⊗Λ+ BtDt ⊗ IN ]
−1

(It ⊗Λ− Bt ⊗ IN ) (It ⊗O)T

(a)
= (It ⊗O)

[
Π (ItN −Λ⊗Dt + IN ⊗ BtDt)Π

T
]−1

Π (Λ⊗ It − IN ⊗ Bt)Π
T(It ⊗O)T

= (It ⊗O)Π [ItN −Λ⊗Dt + IN ⊗ BtDt]
−1

(Λ⊗ It − IN ⊗ Bt)Π
T(It ⊗O)T

= (It ⊗O)Πdiag
{
(It − λ1Dt + BtDt)

−1(λ1It − Bt), . . . , (It − λNDt + BtDt)
−1(λN It − Bt)

}
ΠT(It ⊗O)T

(b)
= (It ⊗O)Π diag {P(λ1), . . . ,P(λN )} ΠT (It ⊗O)T

(c)
= (It ⊗O)


P1,1(Λ)
P2,1(Λ) P2,2(Λ)

...
...

. . .

Pt,1(Λ) Pt,2(Λ) · · · Pt,t(Λ)

 (It ⊗O)T

=


P1,1(W )
P2,1(W ) P2,2(W )

...
...

. . .

Pt,1(W ) Pt,2(W ) · · · Pt,t(W )

 ,
where

• In step (a), Π ∈ RtN×tN denotes the unique permutation matrix that reverses the order of the Kro-
necker product:

Mt ⊗MN = Π(MN ⊗Mt)Π
T, ∀Mt ∈ Rt×t, MN ∈ RN×N . (103a)

Specifically, let σ : [tN ] 7→ [tN ] be a permutation with the following mapping rule:

σ ((i1 − 1)N + i2) = (i2 − 1)t+ i1, ∀i1 ∈ [t], i2 ∈ [N ]. (103b)
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Then, the operation A 7→ ΠAΠT (∀A ∈ RtN×tN ) is a re-ordering of the entries of A according to

Am,n 7→ Aσ(m),σ(n), ∀m,n ∈ [tN ]. (103c)

• In step (b), we introduced the notation:

P(λi) := (It − λiDt + BtDt)
−1(λiIt − Bt) ∈ Rt×t, ∀i ∈ [N ].

Note that since Bt and Dt are lower triangular matrices, (P(λi))i∈[N ] are also lower triangular.

• Step (c) is consequence of the definition of the permutation matrix Π, cf. (103). Here, (Pi,j)1≤i≤t,1≤j≤i

are understood as a sequence of scalar functions, which are defined as follows:
P1,1(λ) 0 · · · 0
P2,1(λ) P2,2(λ) · · · 0

...
...

. . .

Pt,1(λ) Pt,1(λ) · · · Pt,t(λ)

 = (It − λDt + BtDt)
−1(λIt − Bt), ∀λ ∈ R. (104a)

Note that the lower triangular structure of the matrix on the LHS of (104a) is a consequence of the
lower triangular structure of the matrix on the RHS, which is further due to the lower triangular
structures of Bt and Dt.

This completes the proof.

C.2 Choice of De-biasing Matrix (Proof of Lemma 2)

Proof of (1). For t = 1, we have B1 = b1,1 and D1 = 0. Then, P1(λ) = λ − b1,1. Clearly, b1,1 = E[Λ] is
the unique solution to E[P1(Λ)] = 0t×t. In what follows, we assume t ≥ 2. We partition Bt (cf. (23)) and
Dt (cf. (37)) as follows

Bt =

[
Bt−1 0t−1×1

bt bt,t

]
, Dt =

[
Dt−1 0t−1×1

dt 0

]
, (105)

where bt,dt ∈ R1×(t−1). Then,

Pt(λ) = (It − λDt + BtDt)
−1(λIt − Bt)

=

[
It−1 − (λIt−1 − Bt−1)Dt−1 0t−1×1

btDt−1 − (λ− bt,tdt) 1

]−1 [
λIt−1 − Bt−1 0t−1×1

−bt λ− bt,t

]
(a)
=

[
[It−1 − (λIt−1 − Bt−1Dt−1)]

−1
0t−1×1

(−btDt−1 + (λ− bt,t)dt) [It−1 − (λIt−1 − Bt−1Dt−1)]
−1

1

] [
λIt−1 − Bt−1 0t−1×1

−bt λ− bt,t

]
(b)
=

[
Pt−1(λ) 0t−1×1

(−btDt−1 + (λ− bt,t)dt)Pt−1(λ)− bt λ− bt,t,

]
where step (a) is due to the matrix inverse lemma and step (b) is is due to the definition of Pt−1(λ), Now,
enforcing the condition E [Pt(Λ)] = 0t×t gives us

E [Pt−1(Λ)] = 0t−1×t−1, (107a)

E [(−btDt−1 + (Λ− bt,t)dt)Pt−1(Λ)− bt] = 01×t−1, (107b)

E [Λ− bt,t] = 0. (107c)

Notice that Pt−1(λ) only depends on the sub-matrices Bt−1 and Dt−1 (cf. (105)) but not on the last rows of
Bt and Dt. Suppose that the equation E [Pt−1(Λ)] = 0t−1×t−1 uniquely determines the sub-matrix Bt−1 (as
a function of Dt−1). The last row of Bt−1, namely (bt, bt,t) are uniquely determined as

bt,t = m1,

bt = −btDt−1E [Pt−1(Λ)] + dtE [(Λ−m1)Pt−1(Λ)]

= dtE [(Λ−m1)Pt−1(Λ)]

= dtE [ΛPt−1(Λ)] ,
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where we have used E [Pt−1(Λ)] = 0t−1×t−1. Hence, we have shown that, if E [Pt−1(Λ)] = 0t−1×t−1 uniquely
determines the sub-matrix Bt−1, then E [Pt(Λ)] = 0t×t uniquely determines the matrix Bt. Hence, the claim
holds by induction.

Proof of (2) and (4). Claim (1) shows that the solution (39) is unique. It remains to verify that this
a solution Bt can be represented as a polynomial of Dt. Moreover, the coefficients of the polynomial (αi)i≥1

only depend on the law µ, but not on Dt. In other words, there exists a single polynomial that solves (39)
for all Dt. Assume that

Bt =

t∑
i=1

αiD
i−1
t , (109)

where the sequence (αi)i≥1 are yet to be determined. (Note that Dt is strictly lower triangular and hence
Di

t = 0t×t,∀i ≥ t.) The matrix Pt can be written as (cf. (38)):

Pt(λ) = (It − λDt + BtDt)
−1(λIt − Bt)

=

t∑
i=1

(λDt − BtDt)
i−1

(λIt − Bt),

where the second step is due to the following identity for a strictly lower triangular matrix A ∈ Rt×t:
(It −A)−1 = I+A+A2 + · · ·+At−1. Clearly, assuming Bt is a polynomial of Dt, Pt is also a polynomial of
Dt, which we denote as:

Pt(λ) =

t∑
i=1

Qi(λ)D
i−1
t , (111)

where the coefficients (Qi(λ))i≥1 depend on λ. We next provide a recursive characterization of (Qi(λ))i≥1

in terms of (αi)i≥1. From the definition of Pt(λ) (cf. (38)), the following identity holds

(It − λDt + BtDt)Pt(λ)− λIt + Bt = 0t×t. (112)

Using the polynomial representations of Bt and Pt(λ) in (109) and (111), we write the LHS of the above
equation as

(It − λDt + BtDt)Pt(λ)− λIt + Bt (113a)

=

(
It − λDt +

∞∑
i=1

αiD
i
t

) ∞∑
i=1

Qi(λ)D
i−1
t − λIt +

∞∑
i=1

αiD
i−1
t (113b)

=

∞∑
i=1

Qi(λ)D
i−1
t −

∞∑
i=1

λQi(λ)D
i
t +

∞∑
i=1

∞∑
j=1

αiQj(λ)D
i+j−1
t − λIt +

∞∑
i=1

αiD
i−1
t (113c)

=

∞∑
i=1

Qi(λ)D
i−1
t −

∞∑
i=1

λQi(λ)D
i
t +

∞∑
i=1

∞∑
k=1+i

αiQk−i(λ)D
k−1
t − λIt +

∞∑
i=1

αiD
i−1
t (113d)

(a)
=

∞∑
i=1

Qi(λ)D
i−1
t −

∞∑
i=2

λQi−1(λ)D
i−1
t +

∞∑
k=2

(
k−1∑
i=1

αiQk−i(λ)

)
Dk−1

t − λIt +
∞∑
i=1

αiD
i−1
t (113e)

= (Q1(λ)− λ+ α1)It +
∞∑

n=2

(
Qn(λ)− λQn−1(λ) +

n−1∑
i=1

αiQn−i(λ) + αn

)
Dn−1

t , (113f)

where step (a) is due to a swap of the summation order. Note that we have represented the finite order
polynomials of Dt as infinite power series (since D

i
t = 0t×t,∀i ≥ t) in the above equation. This representation

is somewhat more convenient for calculations. Since (113) is identically zero (from (112)), we must have
that

Q1(λ) = λ− α1, (114a)

Qn(λ) = λQn−1(λ)−
n−1∑
i=1

αiQn−i(λ)− αn, ∀n ≥ 2, (114b)
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which provides a recursive definition of (Qi(λ))i≥1 in terms of (ai)i≥1. Recall that Pt(λ) =
∑t

i=1Qi(λ)D
i−1
t .

Therefore, if E[Qi(Λ)] = 0,∀i ∈ [t], then E [Pt(Λ)] = 0t×t, ∀Dt. Taking expectations over Λ ∼ µ in (114) and
setting E[Qi(Λ)] = 0,∀i ∈ [t] leads to the following choice of (αi)i≥1:

α1 = E[Λ], (115a)

αn = E[ΛQn−1(Λ)], ∀n ≥ 2. (115b)

Substituting the above equation into (114) leads to the following recursive characterization of (Qi(λ))i≥1:

Qn(λ) = λQn−1(λ)−
n−1∑
i=1

αiQn−i(λ)− αn (116a)

= λQn−1(λ)−
n−1∑
i=1

E[ΛQi−1(Λ)] ·Qn−i(λ)− E[ΛQn−1(Λ)] (116b)

= λQn−1(λ)−
n∑

i=1

E[ΛQi−1(Λ)] ·Qn−i(λ), (116c)

where we defined Q0(λ) := 1 in the last step. This proves the claim.
Proof of (3). Item (2) shows that the matrix Bt that solves (39) is a polynomial in Dt with coefficients

characterized by (41). The claimed result is then a consequence of this recursion together with Proposition
5.

C.3 State Evolution of RI-AMP (Proof of Theorem 2)

We first address some subtle points in reducing RI-AMP to OAMP. We then apply the general state evolution
result of OAMP to calculate the claimed update equation of the covariance matrix Σt.

Reduction to OAMP: From Lemma 3, the iterates rt in RI-AMP can be written as (cf. (45))

rt = P̂t,1(W )ū1 + · · ·+ P̂t,t(W )ūt, (117a)

ut+1 = ηt+1(r1, . . . , rt), (117b)

ūt+1 = ηt+1(r1, . . . , rt)− (⟨∂1ut+1⟩ · r1 + · · ·+ ⟨∂tut+1⟩ · rt) , (117c)

where the sequence of functions (P̂t,i(λ))1≤t,1≤i≤t are given by the last row of P̂t(λ) ∈ Rt×t:

P̂t(λ) =

t∑
i=1

Qi(λ)Φ̂
i−1

t . (118)

The above iterations can be written into an OAMP algorithm as defined in Definition 1 by introducing
intermediate variables zt,i = P̂t,i(W )ūi and properly re-indexing the iterates. The only subtle point here is

that the functions (P̂t,i(λ))1≤t,1≤i≤t, which depend on the empirical divergences, are random and satisfy the
required trace-free condition in OAMP only in certain asymptotical sense. Nevertheless, similar to the proof
in Appendix B, we can use a simple approximation argument to show that this difference is asymptotically
negligible. More specifically, we note that if we replace the functions (P̂t,i(λ))1≤t,1≤i≤t by (Pt,i(λ))1≤t,1≤i≤t,
which are given by the last row of the following matrix

Pt(λ) =

t∑
i=1

Qi(λ)Φ
i−1
t , (119)

then the state evolution in Appendix B applies. Here, the empirical divergences Φ̂t are replaced by their

limits Φt := plim
N→∞

Φ̂t. (Note that the above limit holds by an inductive argument: we assume Φ̂t
P→ Φt,

then prove the state evolution using our following arguments, and then show Φ̂t+1
P→ Φt+1.) This matrix

satisfies the trace-free condition: EΛ∼µ [Pt(Λ)] = 0t×t.
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Then, we bound the approximation error between these two versions of OAMP, based on the same
arguments used in Appendix B. We do not repeat the full argument, but it suffices to show ∥Pt,i(W ) −
P̂t,i(W )∥op

P→ 0 for all i ∈ [t]. Note that P̂t,i(λ) and Pt,i(λ) are linear combinations of (Qi(λ))i≥1, which we
denote as

P̂t,i(λ) := α̂t,1Q1(λ) + α̂t,2Q2(λ) + · · ·+ α̂t,tQt(λ), (120a)

Pt,i(λ) := αt,1Q1(λ) + αt,2Q2(λ) + · · ·+ αt,tQt(λ). (120b)

Then, the following holds for all t ≥ 1 and 1 ≤ i ≤ t:

∥Pt,i(W )− P̂t,i(W )∥op =

∥∥∥∥∥
t∑

i=1

(αt,i − α̂t,i)Qi(W )

∥∥∥∥∥
op

≤
t∑

i=1

|αt,i − α̂t,i| · ∥Qi(W )∥op
P−→ 0, (121a)

where the last step is due to the assumption that ∥W ∥op is bounded by an N -independent constant (see

Assumption 2) and (Qi)i≥1 are continuous functions (in the current case, polynomials), and α̂t,i
P→ αt,i,∀i =

1, . . . , t (from the fact that Φ̂t
P→ Φt).

Covariance matrix in state evolution: From the above arguments, we can apply Theorem 1 to show
that the empirical distributions of (r1, . . . , rt) converges to a joint Gaussian distribution with zero mean and
covariance

Σt
(a)
= E

Pt(Λ)

Ū1

...
Ūt

 [Ū1, . . . , Ūt

]
Pt(Λ)

T

 , Λ ∼ µ, (122a)

(b)
= E

[
Pt(Λ)∆̄tPt(Λ)

T,
]

(122b)

where step (a) follows Theorem 1 with the empirical divergences replaced by the population-level divergences,
namely (cf. (46)), Pt(λ) =

∑t
i=1Qi(λ)Φ

i−1
t ; step (b) is from the fact that the state evolution random variables

(Ū1, . . . , Ūt) are independent of Λ.

C.4 Equivalence of State Evolution (Proof of Proposition 3)

The following lemma will be used in our proof of Proposition 3.

Lemma 7. Let (Qn)n≥1 and be defined as in (5). Then, the following holds

E [QIQJ ] =

I∑
m=1

J∑
n=1

E [QI−mQJ−n] · κn+m, ∀I, J ≥ 1. (123)

Proof. From Proposition 1, (5) can be rewritten as

Qn = ΛQn−1 −
n∑

i=1

κi ·Qn−i, ∀n ≥ 1, (124)
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with Q0 := 1. Using the above identity, we can relate QIQJ and QI−1QJ+1 as follows:

QIQJ
(a)
=

(
ΛQI−1 −

I∑
i=1

κiQI−i

)
QJ (125a)

= ΛQI−1QJ −
I∑

i=1

κiQI−iQJ (125b)

= ΛQI−1QJ −
J+1∑
j=1

κjQI−1QJ+1−j +

J+1∑
j=1

κjQI−1QJ+1−j −
I∑

i=1

κiQI−iQJ (125c)

= QI−1

(
ΛQJ −

J+1∑
j=1

κjQJ+1−j

)
+QI−1

( J+1∑
j=1

κjQJ+1−j

)
−

I∑
i=1

κiQI−iQJ (125d)

(b)
= QI−1QJ+1 +QI−1

( J+1∑
j=1

κjQJ+1−j

)
−

I∑
i=1

κiQI−iQJ , (125e)

where both step (a) and step (b) used the identity (124). We can apply the same manipulations to relate
QI−1QJ+1 and QI−2QJ+2. Continuing for ℓ steps eventually us the following identity between QI−1QJ+1

and QI−ℓQJ+ℓ:

QIQJ = QI−ℓQJ+ℓ +

ℓ∑
k=1

J+k∑
j=1

κjQI−kQJ+k−j −
ℓ∑

k=1

I−k∑
i=1

κiQI−k+1−iQJ+k−1. (126)

Setting ℓ = I in the above identity yields

QIQJ = Q0QJ+I +

I∑
k=1

J+k∑
j=1

κjQI−kQJ+k−j −
I∑

k=1

I−k∑
i=1

κiQI−k+1−iQJ+k−1 (127a)

= QJ+I +

I∑
k=1

J+k∑
j=1

κjQI−kQJ+k−j −
I∑

k=1

I−k∑
i=1

κiQI−k+1−iQJ+k−1 (Q0 = 1) (127b)

= QJ+I +

I∑
k=1

J+k∑
j=k+1

κjQI−kQJ+k−j︸ ︷︷ ︸
Term I

+

I∑
k=1

k∑
j=1

κjQI−kQJ+k−j −
I∑

k=1

I−k∑
i=1

κiQI−k+1−iQJ+k−1︸ ︷︷ ︸
Term II

, (127c)

where in the last step we split the sum over j into two terms. By a change of variable, we rewrite Term I as

Term I =
I∑

k=1

J∑
j′=1

κk+j′QI−kQJ−j′ . (128)

Note that Term II involves (Qi)J+1≤i≤I+J−1, which are higher order terms that do not appear in the desired
result. It turns out that Term II vanishes:

Term II =
I∑

k=1

k∑
j=1

κjQI−kQJ+k−j −
I∑

k=1

I−k∑
i=1

κiQI−k+1−iQJ+k−1 (129a)

(a)
=

I∑
k′=1

I−k′∑
i=1

κiQI−(k′+i−1)QJ+k′−1 −
I∑

k=1

I−k∑
i=1

κiQI−k+1−iQJ+k−1, (129b)

= 0, (129c)

where step (a) is due to a change of variable (k, j) 7→ (k′, i) via the map[
k′

i

]
=

[
1 −1
0 1

] [
k
j

]
+

[
1
0

]
.
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Note that the map is one-to-one from {(k, j) : 1 ≤ k ≤ I, 1 ≤ j ≤ k} to {(k′, i) : 1 ≤ k′ ≤ I, 1 ≤ i ≤ I − k′},
and hence the reformulation of the nested sums holds.

Summarizing (127)-(129) yields

QIQJ = QJ+I +

I∑
k=1

J∑
j=1

κk+jQI−kQJ−j . (130)

The claimed identity then follows from taking expectation in the above identity and recalling that the random
variables (Qi)i≥1 have zero mean.

Proof of Proposition 3. Recall the following definitions that will be used in our proof:

Σt :=


E
[
R2
1

]
E [R1R2] · · · E [R1Rt]

E [R2R1] E
[
R2
2

]
· · · E [R2Rt]

...
...

. . .
...

E [RtR1] E [RtR2] · · · E
[
R2
t

]
 , (131a)

∆t :=


E
[
U2
1

]
E [U1U2] · · · E [U1Ut]

E [U2U1] E
[
U2
2

]
· · · E [U2Ut]

...
...

. . .
...

E [UtU1] E [UtU2] · · · E
[
U2
t

]
 , (131b)

∆̄t :=


E
[
Ū2
1

]
E
[
Ū1Ū2

]
· · · E

[
Ū1Ūt

]
E
[
Ū2Ū1

]
E
[
Ū2
2

]
· · · E

[
Ū2Ūt

]
...

...
. . .

...
E
[
ŪtŪ1

]
E
[
ŪtŪ2

]
· · · E

[
Ū2
t

]
 , (131c)

Φt :=


0

E [∂1U2] 0
E [∂1U3] E [∂2U3] 0

...
...

. . .

E [∂1Ut] E [∂2Ut] · · · E [∂t−1Ut] 0

 , (131d)

where (R1, . . . ,Rj−1) are jointly Gaussian with zero mean, and we denoted

E [∂iUj ] := E [∂iηj(R1, . . . ,Rj−1)] , ∀j > 1, i ∈ [j − 1]. (131e)

Recall that the covariance Σt in (51a) is expressed using ∆̄t, while the covariance in (52) is expressed using
∆t, where ∆̄t and ∆t denote the covariance of the state evolution random variables (Ūj)j∈[t] and (Uj)j∈[t]

respectively (see (51d) and (52b)):
To related these two expressions, recall the definition

Uj = Ūj +

j−1∑
i=1

E [∂iUj ] · Ri, ∀j > 1, (132)

which can be written into a matrix form
U1

U2

...
Ut

 =


Ū1

Ū2

...
Ūt

+


0

E [∂1U2] 0
E [∂1U3] E [∂2U3] 0

...
...

. . .

E [∂1Ut] E [∂2Ut] · · · E [∂t−1Ut] 0



R1

R2

...
Rt

 (133a)

:=


Ū1

Ū2

...
Ūt

+Φt


R1

R2

...
Rt

 . (133b)
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From Proposition 2, we have the following orthogonality property:

E
[
ŪjRi

]
= 0, ∀i, j ≥ 1. (134)

Following (131), (133) and (134), the covariance matrices ∆t and ∆̄t satisfy the following relation:

∆t = ∆̄t +ΦtΣtΦ
T
t . (135)

Using (135), we can rewrite (51b) as

Σt = E
[
Pt(Λ)∆̄tPt(Λ)

T
]

(136a)

= E

( t∑
i=1

Qi(Λ)Φ
i−1
t

)
∆̄t

(
t∑

i=1

Qi(Λ)Φ
i−1
t

)T
 (136b)

=

t∑
i=1

t∑
j=1

EΛ∼µ [Qi(Λ)Qj(Λ)] ·Φi−1
t ∆̄t (Φ

j−1
t )T (136c)

:=

t∑
i=1

t∑
j=1

Ωi,jΦ
i−1
t ∆̄t (Φ

j−1
t )T (136d)

=

t∑
i=1

t∑
j=1

Ωi,jΦ
i−1
t

(
∆t −ΦtΣtΦ

T
t

)
(Φj−1

t )T (136e)

=

t∑
i=1

t∑
j=1

Ωi,jΦ
i−1
t ∆t (Φ

j−1
t )T −

t∑
i=1

t∑
j=1

Ωi,jΦ
i
t Σt (Φ

j
t )

T, (136f)

where for convenience we denoted

Ωi,j := EΛ∼µ [Qi(Λ)Qj(Λ)] , ∀i ≥ 0, j ≥ 0. (136g)

Since Q0 = 1, we can write Σt = EΛ∼µ [Q0(Λ)Q0(Λ)] ·Φ0
t Σt (Φ

0
t )

T. Moreover, E[Qi(Λ)] = 0, ∀i ≥ 1. Hence,

Σt +

t∑
i=1

t∑
j=1

Ωi,jΦ
i
t Σt (Φ

j
t )

T =

t∑
i=0

t∑
j=0

Ωi,jΦ
i
t Σt (Φ

j
t )

T. (137)

Therefore, we can rewrite (136) as follows

t∑
i=0

t∑
j=0

Ωi,jΦ
i
t Σt (Φ

j
t )

T =

t∑
i=1

t∑
j=1

Ωi,jΦ
i−1
t ∆t (Φ

j−1
t )T. (138)

We treat (138) as an equation of Σt, with (Φt,∆t) being fixed matrices. We remark that this equation has
a unique solution. To see this, we use the identity vec(AXBT) = (B ⊗A)vec(X). Then, a vectorization of
the LHS of (138) reads(

It2 +Ω1,0It ⊗Φt +Ω0,1Φt ⊗ It +Ω2,0It ⊗Φ2
t + · · ·

)
vec(Σt) := Mvec(Σt) (139)

Note that Φt is strictly lower triangular. Hence, the matrix M in the above display is lower triangular with
diagonal elements all equal to one. Therefore, M is invertible and hence (138) has a unique solution.

Next, we verify that one solution (and hence the only one) to (138) is

Σt =

∞∑
j=0

j∑
i=0

κj+2Φ
i
t∆t

(
(Φt)

j−i
)T
, (140)

which is precisely (52). This would conclude the equivalence between (51b) and (52) which we aim to prove.
We first make a change-of-variable (i, j) 7→ (m,n) in (140) via[

i
j

]
=

[
1 0
1 1

] [
m
n

]
−
[
1
2

]
. (141)
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This map is bijective from {(i, j) : 0 ≤ j < ∞, 0 ≤ i ≤ j} to {(m,n) : 1 ≤ m < ∞, 1 ≤ n < ∞}. We then
write (140) as

Σt =

∞∑
m=1

∞∑
n=1

κm+nΦ
m−1
t ∆t

(
(Φt)

n−1
)T

=

t∑
m=1

t∑
n=1

κm+nΦ
m−1
t ∆t

(
(Φt)

n−1
)T
, (142)

where the second step is due to the fact that Φt strictly lower triangular. Towards proving that (142) is a
solution to (138), we substitute (140) into the LHS of (138):

t∑
i=0

t∑
j=0

Ωi,jΦ
i
t Σt (Φ

j
t )

T =

t∑
i=0

t∑
j=0

Ωi,jΦ
i
t

(
t∑

m=1

t∑
n=1

κm+nΦ
m−1
t ∆t

(
(Φt)

n−1
)T)

(Φj
t )

T (143a)

=

t∑
i=0

t∑
j=0

t∑
m=1

t∑
n=1

Ωi,jκm+nΦ
i+m−1
t ∆t

(
(Φt)

n+j−1
)T

(143b)

(a)
=

∑
(I,J)∈[t]×[t]

( ∑
(m′,n′)∈[I]×[J]

ΩI−m′,J−n′ · κm′+n′

)
·ΦI−1

t ∆t

(
ΦJ−1

t

)T
(143c)

(b)
=

∑
(I,J)∈[t]×[t]

ΩI,J ·ΦI−1
t ∆t

(
ΦJ−1

t

)T
, (143d)

where step (a) is due to a change of variable (m, i) 7→ (m′, I) and (n, j) 7→ (n′, J) via the map:

m′ = m, n′ = n,

I = m+ i, J = n+ j,

and step (b) follows from Lemma 7 (and the definition Ωi,j = E [QiQj ]). We now recognize that (143) is
identical to the RHS of (138). This concludes our proof of Proposition 3.

Appendix D RI-AMP-DF Algorithm

D.1 Reduction of RI-AMP-DF to OAMP (Proof of Theorem 3)

Proof of item (1): The de-biasing matrix (54) in RI-AMP-DF can be derived following the calculations
in Appendix C.1. We collect the iterates of RI-AMP-DF into the following form (cf. (53)):

r1
r2
...
rt

 =


Wu1

Wu2

...
Wut

−


c1,1IN
c2,1IN b2,2IN

...
...

. . .

ct,1IN bt,2IN · · · bt,tIN



ū1

ū2

...
ūt

 (144a)

= (It ⊗W )


u1

u2

...
ut

− (Ct ⊗ IN )


ū1

ū2

...
ūt

 (144b)

(a)
= (It ⊗W )



ū1

ū2

...
ūt

+ (Φ̂t ⊗ IN )


r1
r2
...
rt


− (Ct ⊗ IN )


ū1

ū2

...
ūt

 (144c)

= (Φ̂t ⊗W )


r1
r2
...
rt

+ (It ⊗W − Ct ⊗ IN )


ū1

ū2

...
ūt

 , (144d)
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where step (a) is due to the relationship between ut and ūt (which follows the same calculation as (98) but

with Dt replaced by Φ̂t). Then, following the procedure in Appendix C.1, it can be shown that
r1
r2
...
rt

 =
(
ItN − Φ̂t ⊗W

)−1

(It ⊗W − Ct ⊗ IN )


ū1

ū2

...
ūt

 (145a)

:=


Ĝ1,1(W )

Ĝ2,1(W ) Ĝ2,2(W )
...

...
. . .

Ĝt,1(W ) Ĝt,2(W ) · · · Ĝt,t(W )



ū1

ū2

...
ūt

 , (145b)

where (Ĝi,j)1≤i≤t,1≤j≤i is a sequence of polynomials defined as

Ĝt(λ) :=


Ĝ1,1(λ) 0 · · · 0

Ĝ2,1(λ) Ĝ2,2(λ) · · · 0
...

...
. . .

Ĝt,1(λ) Ĝt,1(λ) · · · Ĝt,t(λ)

 = (It − λΦ̂t)
−1(λIt − Ct), ∀λ ∈ R. (145c)

Following Lemma 2, we set the de-biasing matrix Ct as the solution to the equation

E
[
Ĝt(Λ)

]
= 0t×t, (146)

where Ĝt(Λ) is defined in (145c) and the expectation in (146) is taken w.r.t. Λ ∼ µ independent of Φ̂t.
Enforcing the above condition yields

Ct =
(
E
[
(It − ΛΦ̂t)

−1
])−1

E
[
Λ(It − ΛΦ̂t)

−1
]

(147a)

(a)
=

(
t∑

i=1

mi−1Φ̂
i−1

t

)−1( t∑
i=1

miΦ̂
i−1

t

)
, (147b)

where mi := E[Λi], ∀i = 0, 1, . . . (with the convention m0 := 1), and step (a) is due to the expansion

(It − ΛΦ̂t)
−1 =

t∑
i=1

Λi−1Φ̂
i−1

t .

(Recall that Φ̂t is strictly lower triangular.) From (147), Ct is clearly a polynomial of Φ̂t. Further, from

(145c), Ĝt(λ) is also a polynomial of Φ̂t. In the following, we apply the trick in the proof of Lemma 2-(2) to

derive a recursive formula for the coefficients in this polynomial representations of Ct and Ĝt(λ).
Let us denote

Ct :=

t∑
i=1

γiΦ̂
i−1

t , (148a)

Ĝt(λ) :=

t∑
i=1

Hi(λ)Φ̂
i−1

t . (148b)

From (145c), the following equation holds

(It − λΦ̂t)Ĝt(λ)− λIt + Ct = 0t×t. (149)
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Using the polynomial representations of Ct and Ĝt(λ) in (148), we write the LHS of the above equation as

(It − λΦ̂t)Ĝt(λ)− λIt + Ct (150a)

=
(
It − λΦ̂t

) ∞∑
i=1

Hi(λ)Φ̂
i−1

t − λIt +
∞∑
i=1

γiΦ̂
i−1

t (150b)

=

∞∑
i=1

Hi(λ)Φ̂
i−1

t −
∞∑
i=1

λHi(λ)Φ̂
i

t − λIt +
∞∑
i=1

γiΦ̂
i−1

t (150c)

=

∞∑
i=1

Hi(λ)Φ̂
i−1

t −
∞∑
i=2

λHi−1(λ)Φ̂
i−1

t − λIt +
∞∑
i=1

γiΦ̂
i−1

t (150d)

= (H1(λ)− λ+ γ1)It +
∞∑
i=2

(Hi(λ)− λHi−1(λ) + γi) Φ̂
i−1

t . (150e)

Since the above equation is identically zero for any Φ̂t, we must have

H1(λ) = λ− γ1, (151a)

Hi(λ) = λHi−1(λ)− γi, ∀i ≥ 2. (151b)

This provides a recursive definition of (Hi(λ))i≥1 in terms of the sequence (γi)i≥1. On the other hand,
(γi)i≥1 are set such that (Hi(Λ))i≥1 have zero means w.r.t. Λ ∈ µ. Hence,

γ1 = E[Λ], (152a)

γi = E[λHi−1(Λ)], ∀i ≥ 2. (152b)

To summarize, we have the following recursive representations of (Hi(λ))i≥1:

Hi(λ) = λHi−1(λ)− E [λHi−1(λ)] , ∀i ≥ 1, (153)

where H0(λ) := 1. The sequences (γi)i≥1 are given by

γi = E[λHi−1(Λ)], ∀i ≥ 1. (154)

Proof of item (2): The state evolution of RI-AMP-DF readily follows from the master state evolution
result of OAMP. Its proof is similar to that of Theorem 2 and omitted.

D.2 Reduction of GFOM to RI-AMP-DF

We first recall the definition of generalized first order method (GFOM) introduced in [11, 40].

Definition 9 (GFOM [11, 40]). A generalized first order method (GFOM) generates the iterates (xt)t≥1

via
xt = Wϕt(x1, . . . ,xt−1;a) + ψt(x1, . . . ,xt−1;a), ∀t ≥ 1. (155)

At each iteration, the output x̂t is generated by further applying a post-processing:

x̂t = ht (x1, . . . ,xt;a) . (156)

In the above equations, the functions ϕt : Rt−1 ×Rk 7→ R, ψt : Rt−1 ×Rk 7→ R and ht : Rt ×Rk 7→ R, are all
continuously-differentiable and Lipschitz. Further, they all act on the N components of their input vectors
separately. Moreover, these functions do not depend on the dimension N .

For the purpose of establishing a precise reduction result, we make a minor change to the RI-AMP-
DF algorithm: we replace the divergence terms and the de-biasing terms by their limiting deterministic
equivalents. We call it deterministic RI-AMP-DF.
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Definition 10 (Deterministic RI-AMP-DF). Let u1 = ū1 ∈ RN and generate (rt)t≥1 through

rt = Wut − (ct,1ū1 + ct,2ū2 + · · ·+ ct,tūt) , ∀t ≥ 1, (157a)

ut+1 = ηt+1(r1, . . . , rt), (157b)

ūt+1 = ηt+1(r1, . . . , rt)− (dt,1r1 + · · ·+ dt,trt) , (157c)

where, for all t ≥ 1, (ct,i)1≤t,1≤i≤t and (dt,1)1≤t,1≤i≤t are deterministic constants that only depends on the
function (ηi)i≥1 and the limiting spectrum µ, but not on the dimension N .

Following the idea in [11, 40], we show in the following proposition that (deterministic) RI-AMP-DF
can implement any GFOM through a proper change of variables. Since RI-AMP-DF is itself a GFOM, this
implies that RI-AMP-DF and GFOM belong to the same class of algorithms. It is straightforward to show
that the same claim applies to the original RI-AMP algorithm.

Proposition 4 (Deterministic RI-AMP-DF can implement any GFOM). Let (xt)t≥1 be generated by any
GFOM. There exists a deterministic RI-AMP-DF algorithm, whose iterates are denoted as (rt)t≥1, and a
post-processing function φt : Rt × Rk 7→ R, such that the following holds:

xt = φt(r1, . . . , rt;a), ∀t ≥ 1.

Proof. The proof is essentially identical to [40, Lemma 4.1], and we include it here for completeness. We
prove by induction. The claim clearly holds for t = 1. Suppose it holds up to iteration t ≥ 1, we prove that
it also holds for iteration t+ 1. From (155), the new iterate xt+1 of GFOM reads:

xt+1 = Wϕt+1(x1, . . . ,xt;a) + ψt+1(x1, . . . ,xt;a) (158a)
(a)
= Wϕt+1 (φ1(r1;a), . . . , φt(r≤t;a);a) + ψt+1 (φ1(r1;a), . . . , φt(r≤t;a);a) (158b)
(b)
= W ηt+1(r≤t;a) + ψt+1 (φ1(r1;a), . . . , φt(r≤t;a);a) (158c)

(c)
= Wut+1 −

t∑
i=1

ct,iūi︸ ︷︷ ︸
rt+1

+

t∑
i=1

ct,iūi + ψt+1 (φ1(r1;a), . . . , φt(r≤t;a);a) (158d)

(d)
= φt+1(r1, . . . , rt+1;a), (158e)

where

• Step (a) is from the induction hypothesis;

• Step (b) is from the definition of the new denoising function ηt+1 for deterministic RI-AMP-DF;

• Step (c) is from the definition of the new iterate rt+1 in RI-AMP-DF. Note that (ct,i)1≤t,1≤i≤t are
deterministic constants that depend on the denoising functions in previous iterations and the spectrum
µ;

• Step (d) is a definition of the new post-processing function φt+1.

The proof is now complete.
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